Download presentation
Presentation is loading. Please wait.
1
Solar Orbiter RPW - Low Frequency Receiver
LFR team at LPP Thomas Chust Lead Co-I (CNRS) science, calibration, tests Paul Leroy Technical Manager (CNRS) flight software development + SGSE Alexis Jeandet Lead Engineer (CNRS) GSE + SGSE Martin Morlot Study Engineer (CDD) VHDL developement Jean-Christophe Pellion Gérald Saule flight software specification/validation Vincent Leray (20%) Engineer (CDD) product assurance software William Recart (20%) product assurance hardware Bruno Katra Study Engineer (CNRS) software development, calibration, tests Fouad Sahraoui Co-I (CNRS) Yannis Zouganelis Co-I (UPMC) Alessandro Retino ... LPP/CNRS – SO RPW Team Meeting #14 – January 29-30, 2014 – CNES Paris, France
2
Status of LFR resolution (design)
Outline Status of LFR resolution (design) Need for a greater gain of the BIAS differential AC signals ? LPP/CNRS – SO RPW Team Meeting #14 – January 29-30, 2014 – CNES Paris, France
3
LFR downsampling and processing strategy
8 ADCs @ Hz decimation down to Hz ( f0 ) (14 bits ideally) :32 :3 (16 bits) => 18 bits ? (15 bits) (16 bits) (16 bits) Hz 4 096 Hz 16 Hz 256 Hz shaping :3 :2 :64 :4 => 20 bits ? ( f1 ) ( f3 ) ( f2 ) :4 ( f0 ) 2 E 3 B 1 V 2 E 3 B 2 E 3 B 1 V 2 E 3 B 1 V 2 E (3 B) 2 E 3 B 1 V 2 E 3 B FFT FFT FFT (15 bits) Spectral matrices (ASM) Waveforms (WF) Spectral matrices (ASM) Waveforms (WF) Waveforms (WF) Spectral matrices (ASM) Waveforms (WF) Basic parameters (BP) Basic parameters (BP) Basic parameters (BP) LPP/CNRS – SO RPW Team Meeting #14 – January 29-30, 2014 – CNES Paris, France
4
BIAS 5 analogue inputs DC V (G=1/15) DC dV ~ E (G=1)
AC dV ~ E (G=5, 50Hz) LPP/CNRS – SO RPW Team Meeting #14 – January 29-30, 2014 – CNES Paris, France
5
Current set of Basic Parameters
𝐒𝐌 ω 𝑗 𝑚 = 𝐵 1 𝐵 1 ∗ 𝐵 1 𝐵 2 ∗ 𝐵 1 𝐵 3 ∗ 𝐵 1 𝐸 1 ∗ 𝐵 1 𝐸 2 ∗ 𝑐𝑐 𝐵 2 𝐵 2 ∗ 𝐵 2 𝐵 3 ∗ 𝐵 2 𝐸 1 ∗ 𝐵 2 𝐸 2 ∗ 𝑐𝑐 𝑐𝑐 𝐵 3 𝐵 3 ∗ 𝐵 3 𝐸 1 ∗ 𝐵 3 𝐸 2 ∗ 𝑐𝑐 𝑐𝑐 𝑐𝑐 𝐸 1 𝐸 1 ∗ 𝐸 1 𝐸 2 ∗ 𝑐𝑐 𝑐𝑐 𝑐𝑐 𝑐𝑐 𝐸 2 𝐸 2 ∗ 𝐀𝐒𝐌 ω 𝑗 𝑚 = 1 𝑁 𝑆𝑀 𝑚 𝑘=1 𝑁 𝑆𝑀 𝑚 𝐒𝐌 𝑘 ω 𝑗 𝑚 = 𝐒𝐌 𝑡𝑖𝑚𝑒 𝐒 ω 𝑗 𝑚 = 𝐀𝐒𝐌 𝑓𝑟𝑒𝑞𝑢𝑒𝑛𝑐𝑦 BP1 set 1: Power spectrum of the magnetic field BP1 set 2: Power spectrum of the electric field BP1 set 3: Wave normal vector (from B) BP1 set 4: Wave ellipticity estimator (from B) BP1 set 5: Wave planarity estimator (from B) BP1 set 6: XSO-component of the Poynting vector BP1 set 7: Phase velocity estimator BP2 set 1: Autocorrelations BP2 set 2: Normalized cross correlations [ RPW Team Meeting #6 – Prague ] [ RPW Team Meeting #7– Toulouse ] LPP/CNRS – SO RPW Team Meeting #14 – January 29-30, 2014 – CNES Paris, France
6
Cadences of the spectral matrix computation
FSM_m sampling frequency 𝑁 𝐹𝐹𝑇 =256 f0 = Hz 96 SM / s ... ... f1 = 4096 Hz 16 SM / s ... ... ... ... f2 = 256 Hz 1 SM / s ... ... time 1 s LPP/CNRS – SO RPW Team Meeting #14 – January 29-30, 2014 – CNES Paris, France
7
LFR Normal Mode (1) Basic Parameters sampling frequency ...
BP: bps WF: bps ASM: bps TM: bps Basic Parameters sampling frequency BP1 & BP2 BP1 & BP2 BP1 BP1 BP1 ASM BP1 4 SMs 64 SMs 384 SMs 4 SMs 64 SMs 384 SMs 4 SMs 64 SMs 384 SMs 4 SMs 64 SMs 384 SMs 4 SMs 64 SMs 384 SMs 4 SMs 64 SMs 384 SMs 4 SMs 64 SMs 384 SMs f0 = Hz ... TBP1_0= 4 s ... f1 = 4096 Hz ... TBP1_1= 4 s ... f2 = 256 Hz ... TBP1_2= 4 s ... ... 4 s continuous WF ... f3 = 16 Hz 20 s time LPP/CNRS – SO RPW Team Meeting #14 – January 29-30, 2014 – CNES Paris, France
8
LFR spectral frequencies
The spectral matrices are averaged over packets of 8 consecutive frequencies : 128 possible frequencies for NFFT = 256 (mean value is dropped) Δ 𝑓 𝑚 = 𝑓 𝑚 𝑁 𝐹𝐹𝑇 × 𝑁 𝑓𝑟𝑒𝑞 𝑚 𝑁 𝑓𝑟𝑒𝑞 𝑚 =8 f3 = 16 Hz => wave form [DC, 8Hz] f3 / 2.5 = 6.4 Hz f2 = 256 Hz => 12 frequencies [6.5Hz, 102.5Hz] Δ f (2) = 8 Hz f2 / 2.5 = Hz f1 = 4096 Hz => 13 frequencies [88Hz, 1752Hz] Δ f (1) = 128 Hz f1 / 2.5 = Hz f0 = Hz => 11 frequencies [1584Hz, 10032Hz] Δ f (0) = 768 Hz f0 / 2.5 = Hz 10-1 100 101 102 103 104 Hz 6.4Hz 6.5Hz 102.5Hz 88Hz 1752Hz 1584Hz 10032Hz 𝐒= 𝐀𝐒𝐌 𝑓𝑟𝑒𝑞𝑢𝑒𝑛𝑐𝑦 LPP/CNRS – SO RPW Team Meeting #14 – January 29-30, 2014 – CNES Paris, France
9
LFR Normal Mode (2) WaveForms & Averaged Spectral Matrices
TASM= 3600 s sampling frequency TWF= 300 s WF BP1 ASM BP1 WF 384 SMs 384 SMs 384 SMs f0 = Hz 1/12 s ... ... ... 64 SMs 64 SMs 64 SMs f1 = 4096 Hz 1/2 s ... ... ... 4 SMs 4 SMs 4 SMs f2 = 256 Hz 8 s ... ... ... 2048 pts ... f3 = 16 Hz 4 s ... continuous WF ... time LPP/CNRS – SO RPW Team Meeting #14 – January 29-30, 2014 – CNES Paris, France
10
Binary representation of the waveform data
14-bit ADCs : Hz) x 𝐴𝐷𝐶 𝑡 𝑗 = 𝑏 𝑏 𝑏 𝑏 𝑏 𝑏 𝑏 ≡ 𝑏 13 𝑏 12 𝑏 11 𝑏 10 𝑏 9 𝑏 8 𝑏 7 𝑏 6 𝑏 5 𝑏 4 𝑏 3 𝑏 2 𝑏 1 𝑏 0 𝐿𝑆𝐵 14 = 2× 𝑉 𝑚𝑎𝑥 2 𝑛 with𝑛=14and 𝑉 𝑚𝑎𝑥 =3.0V ≃366μV (at LFR input) 16 bits in the FPGA after decimation down to f0 = Hz and f1 = 4096 Hz : x 𝐹𝑃𝐺𝐴 𝑡 𝑗 = 𝑏 𝑏 𝑏 𝑏 𝑏 𝑏 𝑏 𝑏 −1 2 −1 + 𝑏 −2 2 −2 ≡ 𝑏 13 𝑏 12 𝑏 11 𝑏 10 𝑏 9 𝑏 8 𝑏 7 𝑏 6 𝑏 5 𝑏 4 𝑏 3 𝑏 2 𝑏 1 𝑏 0 𝑏 −1 𝑏 −2 𝐿𝑆𝐵 15 = 𝐿𝑆𝐵 ≃183μV 𝐿𝑆𝐵 16 = 𝐿𝑆𝐵 ≃92μV In case of small signals, possibility of 18 bits for f2 = 256 and 20 bits for f3 = 16 Hz : x 𝐹𝑃𝐺𝐴 𝑡 𝑗 = 𝑏 𝑏 𝑏 𝑏 𝑏 𝑏 −4 2 −4 + 𝑏 −5 2 −5 + 𝑏 −6 2 −6 ≡ 𝑏 13 𝑏 12 𝑏 11 𝑏 10 𝑏 9 𝑏 8 𝑏 7 𝑏 6 𝑏 5 𝑏 4 𝑏 3 𝑏 2 𝑏 1 𝑏 0 𝑏 −1 𝑏 −2 𝑏 −3 𝑏 −4 𝑏 −5 𝑏 −6 Should be ok for SCM data but for BIAS data? 𝐿𝑆𝐵 20 = 𝐿𝑆𝐵 ≃6μV LPP/CNRS – SO RPW Team Meeting #14 – January 29-30, 2014 – CNES Paris, France
11
Finite number of bits in computation of the FFT
The FFT input are 16-bit integers : x 𝐹𝑃𝐺𝐴 𝑡 𝑗 = 𝑏 13−𝑑 −𝑑 + 𝑏 12−𝑑 −𝑑 𝑏 0−𝑑 −𝑑 + 𝑏 −1−𝑑 2 −1−𝑑 + 𝑏 −2−𝑑 2 −2−𝑑 ≡ 𝑏 13−𝑑 𝑏 12−𝑑 𝑏 11−𝑑 𝑏 10−𝑑 𝑏 9−𝑑 𝑏 8−𝑑 ... 𝑏 2−𝑑 𝑏 1−𝑑 𝑏 0−𝑑 𝑏 −1−𝑑 𝑏 −2−𝑑 The FFT output are also16-bit integers : FFT 𝑚𝑖𝑛 = 𝐿𝑆𝐵 16 - Currently X 𝐹𝑃𝐺𝐴 ω 𝑖 = 𝑏 13−𝑑 −𝑑 𝑏 −1−𝑑 2 −1−𝑑 + 𝑏 −2−𝑑 2 −2−𝑑 ≡ 𝑏 13−𝑑 𝑏 12−𝑑 𝑏 11−𝑑 𝑏 10−𝑑 𝑏 9−𝑑 𝑏 8−𝑑 ... 𝑏 2−𝑑 𝑏 1−𝑑 𝑏 0−𝑑 𝑏 −1−𝑑 𝑏 −2−𝑑 - with 1 extra bit X 𝐹𝑃𝐺𝐴 ω 𝑖 = 𝑏 12−𝑑 −𝑑 𝑏 −1−𝑑 2 −1−𝑑 + 𝑏 −2−𝑑 2 −2−𝑑 + 𝑏 −3−𝑑 2 −3−𝑑 ≡ 𝑏 13−𝑑 𝑏 12−𝑑 𝑏 11−𝑑 𝑏 10−𝑑 𝑏 9−𝑑 𝑏 8−𝑑 ... 𝑏 2−𝑑 𝑏 1−𝑑 𝑏 0−𝑑 𝑏 −1−𝑑 𝑏 −2−𝑑 𝑏 −3−𝑑 FFT 𝑚𝑖𝑛 = 𝐿𝑆𝐵 = 𝐿𝑆𝐵 17 LPP/CNRS – SO RPW Team Meeting #14 – January 29-30, 2014 – CNES Paris, France
12
SCM preamp noise & LFR resolution
1 extra bit for the FFT result : FFT 𝑚𝑖𝑛 = 𝐿𝑆𝐵 = 𝐿𝑆𝐵 17 𝑑𝑓= 𝑓 sampling 256 𝑁 𝐹𝐹𝑇 =256 f3 = 16 Hz Smallest onboard calculable FFT : 768 PSD_FFT≃ FFT 𝑚𝑖𝑛 2 × 2 𝑑𝑓 f2 = 256 Hz 768 192 Quantification noise for n-bit (ideal) digitization : PSD_WF≃ 𝐿𝑆𝐵 𝑛 × 2 𝑓 sampling f1 = 4096 Hz f0 = Hz LPP/CNRS – SO RPW Team Meeting #14 – January 29-30, 2014 – CNES Paris, France
13
SCM dynamic range MAXIMUM EXPECTED MAGNETIC PERTURBATION AT LFR INPUT
sigma 1Hz-100kHz = V sigma 1Hz-10kHz = V sigma 1Hz-1750Hz = V sigma 1Hz-100Hz = V sigma 1Hz-6.5Hz = V => 16 (+ 4 bits) for f3=16Hz ? LPP/CNRS – SO RPW Team Meeting #14 – January 29-30, 2014 – CNES Paris, France
14
LPP/CNRS – SO RPW Team Meeting #14 – January 29-30, 2014 – CNES Paris, France
15
BIAS required sensitivity level & LFR resolution
f2 = 256 Hz f1 = 4096 Hz f3 = 16 Hz f0 = Hz LPP/CNRS – SO RPW Team Meeting #14 – January 29-30, 2014 – CNES Paris, France
16
BIAS required sensitivity level & max PSD
AC cutoff at : MAXIMUM EXPECTED ELECTRIC PERTURBATION AT LFR INPUT 1) DC dV (Gain=1) & PSD_max = 1.0e-05 (V/m)^2/Hz sigma_f0 (0.0Hz-10kHz) = V sigma_f1 (0.0Hz-1750Hz) = V => 4 (+ 2 bits) for f1=4096Hz ? sigma_f2 (0.0Hz-100Hz) = V => 16 (+ 4 bits) for f2=256Hz ? sigma_f3 (0.0Hz-6.5Hz) = V 5 Hz ? 50 Hz 2) AC dV (Gain=5, cutoff=50Hz) & PSD_max = 1.0e-09 (V/m)^2/Hz sigma_f0 (50.0Hz-10kHz) = 0.1 V sigma_f1 (50.0Hz-1750Hz) = V sigma_f2 (50.0Hz-100Hz) = V => 4 (+ 2 bits) for f1=4096Hz ? => 16 (+ 4 bits) for f2=256Hz ? MOREOVER ! 20 times larger seems possible for AC signals => Gain = 100 ? push AC cutoff frequency down to 5 Hz ? LPP/CNRS – SO RPW Team Meeting #14 – January 29-30, 2014 – CNES Paris, France
17
An additional mode for the BIAS AC dV signals ?
DC V (G=1/15) DC dV ~ E (G=1) AC dV ~ E (G=5, 50Hz) ? R2 LPP/CNRS – SO RPW Team Meeting #14 – January 29-30, 2014 – CNES Paris, France
18
Additional slides I LPP/CNRS – SO RPW Team Meeting #14 – January 29-30, 2014 – CNES Paris, France
19
Averaging random variables
LPP/CNRS – SO RPW Team Meeting #14 – January 29-30, 2014 – CNES Paris, France
20
Increase of the precision by averaging (1)
LPP/CNRS – SO RPW Team Meeting #14 – January 29-30, 2014 – CNES Paris, France
21
Increase of the precision by averaging (2)
LPP/CNRS – SO RPW Team Meeting #14 – January 29-30, 2014 – CNES Paris, France
22
LFR block diagram
23
L.F.R Processing chain
24
LFR 11 analogue inputs LPP/CNRS – SO RPW Team Meeting #14 – January 29-30, 2014 – CNES Paris, France
25
BIAS configurations LPP/CNRS – SO RPW Team Meeting #14 – January 29-30, 2014 – CNES Paris, France
26
LFR operational modes data produced and sent to DPU: data subsequently
transmitted to S/C: NM all (SW In-Situ) BM LFR ~10 min all NM (Shock) SBM1 ~15 min NM all (Type III) SBM2 min LPP/CNRS – SO RPW Team Meeting #14 – January 29-30, 2014 – CNES Paris, France
27
LFR (Shock) Selected-Burst Mode 1
BP: bps WF: bps ASM: bps TM: bps sampling frequency BP1 & BP2 BP1 & BP2 BP1 BP1 BP1 BP1 BP1 24 SMs 24 SMs 24 SMs 24 SMs 24 SMs 24 SMs 24 SMs f0 = Hz ... TBP1_0= 0,25 s ... 0,25 s f1 = 4096 Hz ... ... continuous WF 1 s time LPP/CNRS – SO RPW Team Meeting #14 – January 29-30, 2014 – CNES Paris, France
28
LFR (Solar Wind In-Situ) Burst Mode
BP: bps WF: bps ASM: bps TM: bps sampling frequency BP1 & BP2 BP1 & BP2 BP1 BP1 BP1 BP1 BP1 96 SMs 96 SMs 96 SMs 96 SMs 96 SMs 96 SMs 96 SMs f0 = Hz ... TBP1_0= 1 s ... 16 SMs 16 SMs 16 SMs 16 SMs 16 SMs 16 SMs 16 SMs f1 = 4096 Hz ... TBP1_1= 1 s ... ... 1 s f2 = 256 Hz continuous WF ... 5 s time LPP/CNRS – SO RPW Team Meeting #14 – January 29-30, 2014 – CNES Paris, France
29
LFR (Type III) Selected-Burst Mode 2
BP: bps WF: bps ASM: bps TM: bps Same products as for the BM sampling frequency BP1 & BP2 BP1 & BP2 BP1 BP1 BP1 BP1 BP1 96 SMs 96 SMs 96 SMs 96 SMs 96 SMs 96 SMs 96 SMs f0 = Hz ... TBP1_0= 1 s ... 16 SMs 16 SMs 16 SMs 16 SMs 16 SMs 16 SMs 16 SMs f1 = 4096 Hz ... TBP1_1= 1 s ... f2 = 256 Hz ... 1 s continuous WF ... 5 s time LPP/CNRS – SO RPW Team Meeting #14 – January 29-30, 2014 – CNES Paris, France
Similar presentations
© 2024 SlidePlayer.com. Inc.
All rights reserved.