Download presentation
Presentation is loading. Please wait.
Published byStanley Sullivan Modified over 6 years ago
1
Modeling Blood Flow in the Cardiovascular System
Mette S Olufsen MA 432 Spring 2017 Department of Mathematics, North Carolina State University NC STATE University
2
Compartment Model
3
Compartment Model π= π 1 βπ π
1 πβ π π =πΆ πβ π ππ₯π‘ =πΆπ q V p p1 pext
π= π 1 βπ π
1 πβ π π =πΆ πβ π ππ₯π‘ =πΆπ Assuming that π ππ₯π‘ =0 Dead space volume: π π
4
Solution Total volume Flow where
π π‘ππ‘ = π ππ΄ + π ππ + π ππ΄ + π ππ = π 0 (constant) π= π 0 π ππ΄ + π ππ + π ππ΄ + π ππ π ππ΄ = πΆ ππ΄ πΎ π
+ πΆ ππ΄ π
π π ππ = πΆ ππ πΎ π
π ππ΄ = πΆ ππ΄ πΎ π
+ πΆ ππ΄ π
π π ππ = πΆ ππ πΎ πΏ
5
Solution Flow Volume π= π 0 π ππ΄ + π ππ + π ππ΄ + π ππ
π= π 0 π ππ΄ + π ππ + π ππ΄ + π ππ π π = π π π = π π π 0 π ππ΄ + π ππ + π ππ΄ + π ππ π ππ΄ = πΆ ππ΄ πΎ π
+ πΆ ππ΄ π
π , π ππ΄ = πΆ ππ΄ πΎ π
+ πΆ ππ΄ π
π , π ππ = πΆ ππ πΎ πΏ , π ππ = πΆ ππ πΎ π
6
Solution Flow Pressure π= π 0 π ππ΄ + π ππ + π ππ΄ + π ππ
π= π 0 π ππ΄ + π ππ + π ππ΄ + π ππ π π = π π πΆ π = π π π 0 πΆ π π ππ΄ + π ππ + π ππ΄ + π ππ π ππ΄ = πΆ ππ΄ πΎ π
+ πΆ ππ΄ π
π , π ππ΄ = πΆ ππ΄ πΎ π
+ πΆ ππ΄ π
π , π ππ = πΆ ππ πΎ πΏ , π ππ = πΆ ππ πΎ π
7
Normal Parameter Values
Systemic Pulmonary Units R Rs 17.5 Rp 1.79 mmHg min/liter C Csa 0.01 Cpa .00667 liter/mmHg Csv 1.75 Cpv 0.08 Right Left Unit K KR 2.8 KL 1.2 liter/min/mmHg V V0 5.0 liter
8
Values of Variables SA: Systemic Arteries SV: Systemic Veins
PA: Pulmonary Arteries PV: Pulmonary Veins P (mmHg) V (liter) SA 100 1.0 SV 2 3.5 PA 15 0.1 PV 5 0.4 Stroke volume 70 ml/beat Heart rate 60 beats/min Cardiac output 5.6 l/min
9
Balancing the two sides of the heart
The flow is conserved Systemic arterial pressure is higher π ππ΄ > π ππ΄ The left heart pumps harder (bigger muscle) πΎ πΏ < πΎ π
The systemic resistance is higher π
π > π
π Systemic compliance is higher πΆ ππ΄ < πΆ ππ΄ 20 5 2 100
10
Balancing the two sides of the heart
If πΎ πΏ = πΎ π
, π
π = π
π , β¦ then π ππ΄ = π ππ΄ π ππ΄ = π ππ΄ β¦.
11
Balancing the two sides of the heart
What happens if πΎ π
is suddenly reduced (right heart failure)? Temporarily π π
< π πΏ Net transfer of volume to the systemic circulation Raise systemic venous pressure Lower pulmonary venous pressure Driver flow back to equality
12
Ratio pulmonary to systemic volume
Recall that the volume giving Showing that decreasing πΎ π
increases the denominator reducing the ratio of the volume in the pulmonary circuit to the systemic circuit. π π = π π π π π π π = π ππ΄ + π ππ π ππ΄ + π ππ = π ππ΄ π+ π ππ π π ππ΄ π+ π ππ π = π ππ΄ + π ππ π ππ΄ + π ππ = πΆ ππ΄ + πΆ ππ πΎ πΏ + πΆ ππ΄ π
π / πΆ ππ΄ + πΆ ππ πΎ π
+ πΆ ππ΄ π
π
13
Why does this work? Dependence of cardiac output on venous pressure π=πΎ π π
14
What if πΈ was a parameter?
Lose equations for the heart Lose 2 equations But only 1 variable Necessary to add one relationship, e.g. replace π π‘ππ‘ =π ππ΄ + π ππ + π ππ΄ + π ππ with π ππ΄ + π ππ = π π π ππ΄ + π ππ = π π The two sides become independent
15
Cardiovascular Control
What happens when you start running? Heart rate goes up More blood to the muscles in the legs More blood is pumped out from the heart
16
Cardiovascular control
Arteries Veins BR afferent BR nerves sympathetic nerves para-sympathetic
17
Cardiovascular control
18
Effects of changing the parameters
π= π 0 π ππ΄ + π ππ + π ππ΄ + π ππ π ππ΄ = π ππ΄ π 0 πΆ π π ππ΄ + π ππ + π ππ΄ + π ππ What is the effect on of reducing π
π by a factor of 2? Normal RS halved Change % Q 5.6 6.2 0.6 11% PSA 100 57 -43 -43%
19
Changing Parameters (HW: 1.3)
Norm KS KL RS RP V0 CSA CSV CPA CPV Q 5.6 6.2 PSA 100 57 PSV 2 PPA 15 PPV 5 VSA 1 VSV 3.5 VPA 0.1 VPV 0.4
20
Sensitivity The sensitivity of π with respect to π
π ππ = Ξ log π Ξ log π π ππ = log π β² βlogβ‘(π) log X β² βlog(X) π ππ = log( π β² /π) log( X β² /X)
21
Sensitivity Example (1) π π π
π = log( π β² /π) log( π
π β²/ π
π )
22
Sensitivity Example (2) π π ππ΄ π
π = log( π β² /π) log( π
π β²/ π
π )
23
Sensitivity In the limit of π and π small π ππ = ππ π / ππ π
π ππ = ππ ππ π π
24
Sensitivity It is possible to show (homework 1.10) that -( π π π
π )+ π π ππ΄ π
π β1 Because π ππ΄ βπ π
π The latter holds because π ππ΄ β« π ππ
25
Sensitivities (use parameter change table) HW 1.4
KR KL RS RP V0 CSA CSV CPA CPV Q π π πΎ π
PSA π π ππ΄ πΎ π
PSV PPA PPV VSA VSV VPA VPV
Similar presentations
© 2025 SlidePlayer.com. Inc.
All rights reserved.