Download presentation
Presentation is loading. Please wait.
1
Trigonometry The study of... Angles.
2
P.1.1 +π is rotated counter-clockwise π Standard Position
y-axis Terminal Side Quadrant II Quadrant I (Theta) +π is rotated counter-clockwise βAngle π Terminates in QIIβ π π Initial Side x-axis -π Quadrant IV Complementary Angles: 2 angles that add to 90Λ Quadrant III -π is rotated clockwise βAngle π Terminates in QIIIβ Supplementary Angles: 2 angles that add to 180Λ Coterminal Angles: 2 angles in standard position with the same terminal side
3
y-axis Pythagorean Theorem: for right triangles, π 2 + π 2 = π 2 or π₯ 2 + π¦ 2 = π 2 or πππ 2 + πππ 2 = βπ¦πππ‘πππ’π π 2 P.1.1 r y π x-axis x Triangle Angle Sum Theorem: All angles in a triangle add to 180Λ Special Right Triangles 30Λ-60Λ-90Λ 45Λ-45Λ-90Λ
4
45Λ-45Λ-90Λ 1, 1, 2 P.1.1 t2 + t2 = Hypotenuse2 2t2 = Hypotenuse2 t 2
1, 1, 2 t Isosceles Triangle
5
30Λ-60Λ-90Λ 1, 2, 3 P.1.1 t2 + (h)2 = (2t)2 t2 + (h)2 = 4t2 (h)2 = 3t2
1, 2, 3 Equilateral Triangle
6
The Six Trigonometric Functions I
P.1.3 The Six Trigonometric Functions I sin π= π¦ π csc π = π π¦ y-axis (x, y) cos π= π₯ π sec π= π π₯ r QII y QI tan π= π¦ π₯ cot π= π₯ π¦ (-, +) (+, +) π x-axis x QIII Think Alphabetical QIV π= π₯ 2 + π¦ 2 (-, -) (x, y) = (cosA, sinA) (+, -)
7
+ - For π inβ¦ QI QII QIII QIV P.1.3 sinπ and cscπ cosπ and secπ
tanπ and cotπ P.1.3
8
Trigonometric Identities
P.1.4 Trigonometric Identities The Reciprocal Identities sin π= 1 csc π csc π = 1 sin π cos π= 1 sec π sec π= 1 cos π Memorize tan π= 1 cot π cot π= 1 tan π
9
Trigonometric Identities
P.1.4 Trigonometric Identities The Ratio Identities π¦ π₯ = π¦ π π₯ π = sin π cos π sin π= π¦ π cos π= π₯ π Memorize tan π= π¦ π₯ tan π= sin π cos π cot π= cos π sin π
10
Trigonometric Identities
P.1.4 y-axis r y The Pythagorean Identities π x-axis (sinπ)2 = sin2 π x First R = 1 Okay, nowβ¦ x2 + y2 = r2 cos2 π + sin2 π = 1 (x, y) = (cosπ, sinπ) Memorize
11
cos2 π + sin2 π = 1 cos2 π = 1 - sin2 π sin2 π = 1 - cos2 π
P.1.4 The Pythagorean Identities (alternate forms) cos2 π + sin2 π = 1 Memorize cos2 π = 1 - sin2 π sin2 π = 1 - cos2 π sinπ = Β± 1 - cos2 π cosπ = Β± 1 - sin2 π
12
cos2 π + sin2 π = 1 1 + tan2 π = sec2 π cot2 π + 1 = csc2 π
P.1.4 The Pythagorean Identities (alternate forms) cos2 π + sin2 π = 1 Memorize cos2 π cos2 π + sin2 π cos2 π = 1 cos2 π cos2 π sin2 π + sin2 π sin2 π = 1 sin2 π 1 + tan2 π = sec2 π cot2 π + 1 = csc2 π
13
The Reciprocal Identities
P.1.4/P.1.5 sin π= 1 csc π csc π = 1 sin π The Ratio Identities cos π= 1 sec π sec π= 1 cos π tan π= sin π cos π cot π= cos π sin π tan π= 1 cot π cot π= 1 tan π The Pythagorean Identities cosπ = Β± 1 - sin2 π cos2 π + sin2 π = 1 sinπ = Β± 1 - cos2 π cos2 π = 1 - sin2 π sin2 π = 1 - cos2 π 1 + tan2 π = sec2 π cot2 π + 1 = csc2 π
14
Algebra Things to Keep in Mind P.1.5
Expand It! Factor (The difference of squares) Condense It! Distribute (The difference of squares) Multiply by ONE (The difference of squares/conjugate) Simplify complex fractions (multiply by the reciprocal) Common Denominator (to add fractions together) Change everything to sines and cosines Use the basic identities P.1.5
15
Expression = Expression
Look at options for rewriting expression, pick one Rewrite Look and see options pick one
16
The Six Trigonometric Functions II
P.2.1 The Six Trigonometric Functions II B sinA = cscA = Hypotenuse (c) cosA = secA = Opposite (a) tanA = cotA = C A Adjacent (b)
17
Co-Functions P.2.1 Co-Function Theorem
A trig function of an angle is = to the cofunction of the complement Co-Functions B =90Λ-A (c) (a) sinA = cosB secA = cscB cosA = sinB cscA = secB C A (b) tanA = cotB cotA = tanB
18
The Six Trigonometric Functions II
P.2.1 The Six Trigonometric Functions II Back to the 30Λ-60Λ-90Λ sin30Λ = sin60Λ = 30Λ cos30Λ = cos60Λ = 2x X 3 tan30Λ = tan60Λ = 60Λ x
19
The Six Trigonometric Functions II
P.2.1 The Six Trigonometric Functions II Back to the 45Λ-45Λ-90Λ sin45Λ = 45Λ cos45Λ = x 2 X tan45Λ = 45Λ x sin0Λ = sin90Λ = cos0Λ = cos90Λ = tan0Λ = tan90Λ =
20
P.2.1 0Λ 30Λ 45Λ 60Λ 90Λ sinA cosA tanA
21
Solving Right Triangles
P.2.3 Solving Right Triangles Find ALL missing side lengths Find ALL missing angle measures Sides Angles - Pythagorean Theorem - Triangle Angle Sum Theorem - Trig - Inverse Trig SOH CAH TOA SOH CAH TOA TRIG(Angle)= The ratio of the side lengths of a right triangle TRIG(Angle)=TROTSLOART
22
Angle of Elevation and Depression
An angle measured from the horizontal rotated up is called an angle of elevation, rotated down is called an angle of depression.
Similar presentations
© 2024 SlidePlayer.com. Inc.
All rights reserved.