Presentation is loading. Please wait.

Presentation is loading. Please wait.

Trigonometry The study of... Angles..

Similar presentations


Presentation on theme: "Trigonometry The study of... Angles.."β€” Presentation transcript:

1 Trigonometry The study of... Angles.

2 P.1.1 +πœƒ is rotated counter-clockwise πœƒ Standard Position
y-axis Terminal Side Quadrant II Quadrant I (Theta) +πœƒ is rotated counter-clockwise β€œAngle πœƒ Terminates in QII” πœƒ πœƒ Initial Side x-axis -πœƒ Quadrant IV Complementary Angles: 2 angles that add to 90˚ Quadrant III -πœƒ is rotated clockwise β€œAngle πœƒ Terminates in QIII” Supplementary Angles: 2 angles that add to 180˚ Coterminal Angles: 2 angles in standard position with the same terminal side

3 y-axis Pythagorean Theorem: for right triangles, π‘Ž 2 + 𝑏 2 = 𝑐 2 or π‘₯ 2 + 𝑦 2 = π‘Ÿ 2 or 𝑙𝑒𝑔 2 + 𝑙𝑒𝑔 2 = β„Žπ‘¦π‘π‘œπ‘‘π‘’π‘›π‘’π‘ π‘’ 2 P.1.1 r y πœƒ x-axis x Triangle Angle Sum Theorem: All angles in a triangle add to 180˚ Special Right Triangles 30˚-60˚-90˚ 45˚-45˚-90˚

4 45˚-45˚-90˚ 1, 1, 2 P.1.1 t2 + t2 = Hypotenuse2 2t2 = Hypotenuse2 t 2
1, 1, 2 t Isosceles Triangle

5 30˚-60˚-90˚ 1, 2, 3 P.1.1 t2 + (h)2 = (2t)2 t2 + (h)2 = 4t2 (h)2 = 3t2
1, 2, 3 Equilateral Triangle

6 The Six Trigonometric Functions I
P.1.3 The Six Trigonometric Functions I sin πœƒ= 𝑦 π‘Ÿ csc πœƒ = π‘Ÿ 𝑦 y-axis (x, y) cos πœƒ= π‘₯ π‘Ÿ sec πœƒ= π‘Ÿ π‘₯ r QII y QI tan πœƒ= 𝑦 π‘₯ cot πœƒ= π‘₯ 𝑦 (-, +) (+, +) πœƒ x-axis x QIII Think Alphabetical QIV π‘Ÿ= π‘₯ 2 + 𝑦 2 (-, -) (x, y) = (cosA, sinA) (+, -)

7 + - For πœƒ in… QI QII QIII QIV P.1.3 sinπœƒ and cscπœƒ cosπœƒ and secπœƒ
tanπœƒ and cotπœƒ P.1.3

8 Trigonometric Identities
P.1.4 Trigonometric Identities The Reciprocal Identities sin πœƒ= 1 csc πœƒ csc πœƒ = 1 sin πœƒ cos πœƒ= 1 sec πœƒ sec πœƒ= 1 cos πœƒ Memorize tan πœƒ= 1 cot πœƒ cot πœƒ= 1 tan πœƒ

9 Trigonometric Identities
P.1.4 Trigonometric Identities The Ratio Identities 𝑦 π‘₯ = 𝑦 π‘Ÿ π‘₯ π‘Ÿ = sin πœƒ cos πœƒ sin πœƒ= 𝑦 π‘Ÿ cos πœƒ= π‘₯ π‘Ÿ Memorize tan πœƒ= 𝑦 π‘₯ tan πœƒ= sin πœƒ cos πœƒ cot πœƒ= cos πœƒ sin πœƒ

10 Trigonometric Identities
P.1.4 y-axis r y The Pythagorean Identities πœƒ x-axis (sinπœƒ)2 = sin2 πœƒ x First R = 1 Okay, now… x2 + y2 = r2 cos2 πœƒ + sin2 πœƒ = 1 (x, y) = (cosπœƒ, sinπœƒ) Memorize

11 cos2 πœƒ + sin2 πœƒ = 1 cos2 πœƒ = 1 - sin2 πœƒ sin2 πœƒ = 1 - cos2 πœƒ
P.1.4 The Pythagorean Identities (alternate forms) cos2 πœƒ + sin2 πœƒ = 1 Memorize cos2 πœƒ = 1 - sin2 πœƒ sin2 πœƒ = 1 - cos2 πœƒ sinπœƒ = Β± 1 - cos2 πœƒ cosπœƒ = Β± 1 - sin2 πœƒ

12 cos2 πœƒ + sin2 πœƒ = 1 1 + tan2 πœƒ = sec2 πœƒ cot2 πœƒ + 1 = csc2 πœƒ
P.1.4 The Pythagorean Identities (alternate forms) cos2 πœƒ + sin2 πœƒ = 1 Memorize cos2 πœƒ cos2 πœƒ + sin2 πœƒ cos2 πœƒ = 1 cos2 πœƒ cos2 πœƒ sin2 πœƒ + sin2 πœƒ sin2 πœƒ = 1 sin2 πœƒ 1 + tan2 πœƒ = sec2 πœƒ cot2 πœƒ + 1 = csc2 πœƒ

13 The Reciprocal Identities
P.1.4/P.1.5 sin πœƒ= 1 csc πœƒ csc πœƒ = 1 sin πœƒ The Ratio Identities cos πœƒ= 1 sec πœƒ sec πœƒ= 1 cos πœƒ tan πœƒ= sin πœƒ cos πœƒ cot πœƒ= cos πœƒ sin πœƒ tan πœƒ= 1 cot πœƒ cot πœƒ= 1 tan πœƒ The Pythagorean Identities cosπœƒ = Β± 1 - sin2 πœƒ cos2 πœƒ + sin2 πœƒ = 1 sinπœƒ = Β± 1 - cos2 πœƒ cos2 πœƒ = 1 - sin2 πœƒ sin2 πœƒ = 1 - cos2 πœƒ 1 + tan2 πœƒ = sec2 πœƒ cot2 πœƒ + 1 = csc2 πœƒ

14 Algebra Things to Keep in Mind P.1.5
Expand It! Factor (The difference of squares) Condense It! Distribute (The difference of squares) Multiply by ONE (The difference of squares/conjugate) Simplify complex fractions (multiply by the reciprocal) Common Denominator (to add fractions together) Change everything to sines and cosines Use the basic identities P.1.5

15 Expression = Expression
Look at options for rewriting expression, pick one Rewrite Look and see options pick one

16 The Six Trigonometric Functions II
P.2.1 The Six Trigonometric Functions II B sinA = cscA = Hypotenuse (c) cosA = secA = Opposite (a) tanA = cotA = C A Adjacent (b)

17 Co-Functions P.2.1 Co-Function Theorem
A trig function of an angle is = to the cofunction of the complement Co-Functions B =90˚-A (c) (a) sinA = cosB secA = cscB cosA = sinB cscA = secB C A (b) tanA = cotB cotA = tanB

18 The Six Trigonometric Functions II
P.2.1 The Six Trigonometric Functions II Back to the 30˚-60˚-90˚ sin30˚ = sin60˚ = 30˚ cos30˚ = cos60˚ = 2x X 3 tan30˚ = tan60˚ = 60˚ x

19 The Six Trigonometric Functions II
P.2.1 The Six Trigonometric Functions II Back to the 45˚-45˚-90˚ sin45˚ = 45˚ cos45˚ = x 2 X tan45˚ = 45˚ x sin0˚ = sin90˚ = cos0˚ = cos90˚ = tan0˚ = tan90˚ =

20 P.2.1 0˚ 30˚ 45˚ 60˚ 90˚ sinA cosA tanA

21 Solving Right Triangles
P.2.3 Solving Right Triangles Find ALL missing side lengths Find ALL missing angle measures Sides Angles - Pythagorean Theorem - Triangle Angle Sum Theorem - Trig - Inverse Trig SOH CAH TOA SOH CAH TOA TRIG(Angle)= The ratio of the side lengths of a right triangle TRIG(Angle)=TROTSLOART

22 Angle of Elevation and Depression
An angle measured from the horizontal rotated up is called an angle of elevation, rotated down is called an angle of depression.


Download ppt "Trigonometry The study of... Angles.."

Similar presentations


Ads by Google