Presentation is loading. Please wait.

Presentation is loading. Please wait.

REGRESI DENGAN VARABEL FAKTOR/ KUALLTATIF

Similar presentations


Presentation on theme: "REGRESI DENGAN VARABEL FAKTOR/ KUALLTATIF"— Presentation transcript:

1 REGRESI DENGAN VARABEL FAKTOR/ KUALLTATIF
KASUS I: FAKTOR TIDAK BERPENGARUH

2

3 REGRESI DIPERIKSA INTERAKSI
lm(formula = y1 ~ x1 * g, data = DataSimReg) Coefficients: Estimate Std. Error t value Pr(>|t|) (Intercept) e-11 *** x < 2e-16 *** g[T.P] x1:g[T.P] --- Signif. codes: 0 '***' '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1 Residual standard error: on 56 degrees of freedom Multiple R-squared: 0.998, Adjusted R-squared: F-statistic: on 3 and 56 DF, p-value: < 2.2e-16

4 REGRESI DIPISAH lm(formula = y1 ~ g/x1 - 1, data = DataSimReg)
Coefficients: Estimate Std. Error t value Pr(>|t|) gL e-11 *** gP e-09 *** gL:x < 2e-16 *** gP:x < 2e-16 *** --- Signif. codes: 0 '***' '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1 Residual standard error: on 56 degrees of freedom Multiple R-squared: 1, Adjusted R-squared: F-statistic: 2.864e+05 on 4 and 56 DF, p-value: < 2.2e-16

5 REGRESI DIGABUNG lm(formula = y1 ~ x1, data = DataSimReg)
Coefficients: Estimate Std. Error t value Pr(>|t|) (Intercept) e-15 *** x < 2e-16 *** --- Signif. codes: 0 '***' '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1 Residual standard error: on 58 degrees of freedom Multiple R-squared: 0.998, Adjusted R-squared: 0.998 F-statistic: 2.899e+04 on 1 and 58 DF, p-value: < 2.2e-16

6 FAKTOR BERPENGARUH TANPA INTERAKSI

7 PERIKSA INTERAKSI lm(formula = y2 ~ x1 * g, data = DataSimReg)
Coefficients: Estimate Std. Error t value Pr(>|t|) (Intercept) <2e-16 *** x <2e-16 *** g[T.P] <2e-16 *** x1:g[T.P] --- Signif. codes: 0 '***' '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1 Residual standard error: on 56 degrees of freedom Multiple R-squared: , Adjusted R-squared: F-statistic: 1.28e+04 on 3 and 56 DF, p-value: < 2.2e-16

8 PAKSA REGRESI BERBEDA lm(formula = y2 ~ g/x1 - 1, data = DataSimReg)
Coefficients: Estimate Std. Error t value Pr(>|t|) gL <2e-16 *** gP <2e-16 *** gL:x <2e-16 *** gP:x <2e-16 *** --- Signif. codes: 0 '***' '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1 Residual standard error: on 56 degrees of freedom Multiple R-squared: , Adjusted R-squared: F-statistic: 8.923e+04 on 4 and 56 DF, p-value: < 2.2e-16

9 REGRESI PARALEL lm(formula = y2 ~ g + x1 - 1, data = DataSimReg)
Coefficients: Estimate Std. Error t value Pr(>|t|) gL <2e-16 *** gP <2e-16 *** x <2e-16 *** --- Signif. codes: 0 '***' '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1 Residual standard error: on 57 degrees of freedom Multiple R-squared: , Adjusted R-squared: F-statistic: 1.196e+05 on 3 and 57 DF, p-value: < 2.2e-16

10 REGRESI DIGABUNG lm(formula = y2 ~ x1, data = DataSimReg)
Coefficients: Estimate Std. Error t value Pr(>|t|) (Intercept) x ** --- Signif. codes: 0 '***' '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1 Residual standard error: on 58 degrees of freedom Multiple R-squared: , Adjusted R-squared: F-statistic: on 1 and 58 DF, p-value:

11 FAKTOR BERINTERAKSI

12 MEMERIKSA INTERAKSI lm(formula = y3 ~ g * x1, data = DataSimReg)
Coefficients: Estimate Std. Error t value Pr(>|t|) (Intercept) <2e-16 *** g[T.P] <2e-16 *** x <2e-16 *** g[T.P]:x <2e-16 *** --- Signif. codes: 0 '***' '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1 Residual standard error: on 56 degrees of freedom Multiple R-squared: , Adjusted R-squared: F-statistic: on 3 and 56 DF, p-value: < 2.2e-16

13 REGRESI DIPISAH lm(formula = y3 ~ g/x1 - 1, data = DataSimReg)
Coefficients: Estimate Std. Error t value Pr(>|t|) gL <2e-16 *** gP <2e-16 *** gL:x <2e-16 *** gP:x <2e-16 *** --- Signif. codes: 0 '***' '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1 Residual standard error: on 56 degrees of freedom Multiple R-squared: , Adjusted R-squared: F-statistic: on 4 and 56 DF, p-value: < 2.2e-16

14 REGRESI PARALEL lm(formula = y3 ~ g + x1 - 1, data = DataSimReg)
Coefficients: Estimate Std. Error t value Pr(>|t|) gL * gP ** x --- Signif. codes: 0 '***' '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1 Residual standard error: on 57 degrees of freedom Multiple R-squared: , Adjusted R-squared: F-statistic: on 3 and 57 DF, p-value: < 2.2e-16

15 REGRESI DIGABUNG lm(formula = y3 ~ x1, data = DataSimReg)
Coefficients: Estimate Std. Error t value Pr(>|t|) (Intercept) x Residual standard error: on 58 degrees of freedom Multiple R-squared: , Adjusted R-squared: F-statistic: on 1 and 58 DF, p-value:


Download ppt "REGRESI DENGAN VARABEL FAKTOR/ KUALLTATIF"

Similar presentations


Ads by Google