Download presentation
Presentation is loading. Please wait.
1
REGRESI DENGAN VARABEL FAKTOR/ KUALLTATIF
KASUS I: FAKTOR TIDAK BERPENGARUH
3
REGRESI DIPERIKSA INTERAKSI
lm(formula = y1 ~ x1 * g, data = DataSimReg) Coefficients: Estimate Std. Error t value Pr(>|t|) (Intercept) e-11 *** x < 2e-16 *** g[T.P] x1:g[T.P] --- Signif. codes: 0 '***' '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1 Residual standard error: on 56 degrees of freedom Multiple R-squared: 0.998, Adjusted R-squared: F-statistic: on 3 and 56 DF, p-value: < 2.2e-16
4
REGRESI DIPISAH lm(formula = y1 ~ g/x1 - 1, data = DataSimReg)
Coefficients: Estimate Std. Error t value Pr(>|t|) gL e-11 *** gP e-09 *** gL:x < 2e-16 *** gP:x < 2e-16 *** --- Signif. codes: 0 '***' '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1 Residual standard error: on 56 degrees of freedom Multiple R-squared: 1, Adjusted R-squared: F-statistic: 2.864e+05 on 4 and 56 DF, p-value: < 2.2e-16
5
REGRESI DIGABUNG lm(formula = y1 ~ x1, data = DataSimReg)
Coefficients: Estimate Std. Error t value Pr(>|t|) (Intercept) e-15 *** x < 2e-16 *** --- Signif. codes: 0 '***' '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1 Residual standard error: on 58 degrees of freedom Multiple R-squared: 0.998, Adjusted R-squared: 0.998 F-statistic: 2.899e+04 on 1 and 58 DF, p-value: < 2.2e-16
6
FAKTOR BERPENGARUH TANPA INTERAKSI
7
PERIKSA INTERAKSI lm(formula = y2 ~ x1 * g, data = DataSimReg)
Coefficients: Estimate Std. Error t value Pr(>|t|) (Intercept) <2e-16 *** x <2e-16 *** g[T.P] <2e-16 *** x1:g[T.P] --- Signif. codes: 0 '***' '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1 Residual standard error: on 56 degrees of freedom Multiple R-squared: , Adjusted R-squared: F-statistic: 1.28e+04 on 3 and 56 DF, p-value: < 2.2e-16
8
PAKSA REGRESI BERBEDA lm(formula = y2 ~ g/x1 - 1, data = DataSimReg)
Coefficients: Estimate Std. Error t value Pr(>|t|) gL <2e-16 *** gP <2e-16 *** gL:x <2e-16 *** gP:x <2e-16 *** --- Signif. codes: 0 '***' '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1 Residual standard error: on 56 degrees of freedom Multiple R-squared: , Adjusted R-squared: F-statistic: 8.923e+04 on 4 and 56 DF, p-value: < 2.2e-16
9
REGRESI PARALEL lm(formula = y2 ~ g + x1 - 1, data = DataSimReg)
Coefficients: Estimate Std. Error t value Pr(>|t|) gL <2e-16 *** gP <2e-16 *** x <2e-16 *** --- Signif. codes: 0 '***' '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1 Residual standard error: on 57 degrees of freedom Multiple R-squared: , Adjusted R-squared: F-statistic: 1.196e+05 on 3 and 57 DF, p-value: < 2.2e-16
10
REGRESI DIGABUNG lm(formula = y2 ~ x1, data = DataSimReg)
Coefficients: Estimate Std. Error t value Pr(>|t|) (Intercept) x ** --- Signif. codes: 0 '***' '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1 Residual standard error: on 58 degrees of freedom Multiple R-squared: , Adjusted R-squared: F-statistic: on 1 and 58 DF, p-value:
11
FAKTOR BERINTERAKSI
12
MEMERIKSA INTERAKSI lm(formula = y3 ~ g * x1, data = DataSimReg)
Coefficients: Estimate Std. Error t value Pr(>|t|) (Intercept) <2e-16 *** g[T.P] <2e-16 *** x <2e-16 *** g[T.P]:x <2e-16 *** --- Signif. codes: 0 '***' '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1 Residual standard error: on 56 degrees of freedom Multiple R-squared: , Adjusted R-squared: F-statistic: on 3 and 56 DF, p-value: < 2.2e-16
13
REGRESI DIPISAH lm(formula = y3 ~ g/x1 - 1, data = DataSimReg)
Coefficients: Estimate Std. Error t value Pr(>|t|) gL <2e-16 *** gP <2e-16 *** gL:x <2e-16 *** gP:x <2e-16 *** --- Signif. codes: 0 '***' '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1 Residual standard error: on 56 degrees of freedom Multiple R-squared: , Adjusted R-squared: F-statistic: on 4 and 56 DF, p-value: < 2.2e-16
14
REGRESI PARALEL lm(formula = y3 ~ g + x1 - 1, data = DataSimReg)
Coefficients: Estimate Std. Error t value Pr(>|t|) gL * gP ** x --- Signif. codes: 0 '***' '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1 Residual standard error: on 57 degrees of freedom Multiple R-squared: , Adjusted R-squared: F-statistic: on 3 and 57 DF, p-value: < 2.2e-16
15
REGRESI DIGABUNG lm(formula = y3 ~ x1, data = DataSimReg)
Coefficients: Estimate Std. Error t value Pr(>|t|) (Intercept) x Residual standard error: on 58 degrees of freedom Multiple R-squared: , Adjusted R-squared: F-statistic: on 1 and 58 DF, p-value:
Similar presentations
© 2025 SlidePlayer.com. Inc.
All rights reserved.