Download presentation
Presentation is loading. Please wait.
Published byThomasine Morris Modified over 6 years ago
1
Wet (DNA) computing 2001년 9월 20일 이지연
2
Contents 1. Wet computing
Until Now.. & Now..ing & Our Plan Experimental Results Discussion : Trouble shooting/Constraints on the reactions : New DNA sequence design strategy 2. Artificial base & Wet computing into lab-on-a-chip Progress
3
Wet Computing : Until Now..
Adleman’s experiment : HPP (Hamiltonian Path Problem) : Problem size ~ 7 nodes Lipton : SAT problem : Array-based ???: Maximal clique problem : Problem size ~ variable, clause Make all possible solutions and… select a correct answer Algorithm and Tools
4
Wet Computing : Now..ing GMD (Germany) : MCP, SAT Japan/Our team : TSP
: Preparing the experiments : Realization of LOC Japan/Our team : TSP : Realization of weight by DNA sequence (length/GC content) Toy problem Japan/Our team : Theorem proving : Toy problem, Preparing the experiments
5
Wet Computing : Our Plan
TSP larger problem size Theorem Proving larger and complex problem Version Space learning problem Other Candidates Commercial Device
6
Experimental Results Target problem 4 3 1 6 2 5
nodes : 1 2 3 4 5 6 (18) 260bp edges : 2 1 3 4 5 6 (24) 250bp weights : 5 3 4 3 7 1 start & end 3 9 3 11 11 3 3 6 5 3 3 2 5
7
reduce template amount
TSP 03 I Target problem nodes : 4 edges : 10 weights : 3 Possible paths 0 1 2 3 : 140bp 0 2 3 : 100bp 0 1 3 : 90bp Effect of weight sequcne CAGTGGGTCCTCCGTTCCGC (14/20) AATTGGATCCTCCATTCCTT (8/20) 3 7 1 3 3 3 5 2 reduce template amount
8
TSP 03 II Mixture Result lane 1 : marker 0~6 all
phosphorylation higher annealing temperature (higher primer Tm) Result Specific amplification Template copy number lane 1 : marker lane 2 : negative ctrl lane 3,4 : PCR with primer 03
9
3 4 3 7 1 start & end 3 9 3 11 11 3 3 6 5 3 3 2 5
10
TSP 16 Target problem 4 3 1 6 2 5 nodes : 6 edges : 18 weights : 4
lane 1: marker lane 2: 0.02X template lane 3: 0.004X lane 4: X Target problem nodes : 6 edges : 18 weights : 4 3 4 3 7 1 9 3 11 11 3 6 3 3 lane 1: marker lane 2: 0.1X template lane 3: 0.01X lane 4: 0.001X lane 5: X lane 6: negative ctrl lane 7: ligation 2 5
11
TSP 06 I Possible problems lane 1 : 06(A) lane 2 : 06(A) elution
lane 3 : negative PCR ctrl lane 4 : marker lane 5~7 : previous sample Possible problems phosphorylation ligation : longer strand non-specific annealing
12
TSP 06 II Phosphorylation Primer design Conditions
: length, uniform melting temperature primer 1 TACCCCGAAA CAACGCAGAA GC 22mer Tm=61.9 ℃ primer 2 TATGTCCAGC TGTCGCAAAG CAG 23mer Tm=61.1 ℃
13
5’ 3’ 3’ 5’ 5’ 3’ 3’ 5’ edge_01 edge_12 vertex_0 weight_3 vertex_1
CAACGCAGAA GCGGAACGGAGGAGCCACTG CTCACCTCTC CACAGTGCAG GCGGAACGGAGGAGCCACTG CGATGGCCTT ATGGGGCTTT GTTGCGTCTT CGCCTTGCCTCCTCGGTGAC GAGTGGAGAG GTGTCACGTC CGCCTTGCCTCCTCGGTGAC GCTACCGGAA CACTTAGGTG 3’ vertex_0 weight_3 vertex_1 weight_3 vertex_2 5’ TACCCCGAAA CAACGCAGAA 5’ TACCCCGAAA CAACGCAGAA GC 5’ GAC GAAACGCTGT CGACCTGTAT 5’ GAAACGCTGT CGACCTGTAT 5’ 5’ edge_45 edge_56 3’ ACGACCGTTT GCGGAACGGAGGAGCCACTG TGTCTACAGG TGGACTGTGC GCGGAACGGAGGAGCCACTG CTTTGCGACA AAGTAGTGAA TGCTGGCAAA CGCCTTGCCTCCTCGGTGAC ACAGATGTCC ACCTGACACG CGCCTTGCCTCCTCGGTGAC GAAACGCTGT CGACCTGTAT 3’ vertex_4 weight_3 vertex_5 weight_3 vertex_6 5’
14
Repetitive Ligation For longer strand formation Before After
15
Discussion Unexpected amplification of primers
Amplification of small size of DNA Reduction of template concentration Effect of weight sequcne (TSP 03) Weight 3 : CAGTGGCTCCTCCGTTCCGC (14/20) Weight 5 : AATTGGATCCTCCATTCCTT (8/20) Melting temperature of primers Unexpected Tm differences between node sequences Node 0 : TTCTGCGTTG TTTCGGGGTA (10/20) Tm = 57.6 ℃ Node 1 : CTGCACTGTG GAGAGGTGAG (12/20) Tm = 52.6 ℃ Node 2 : GTGGATTCAC AAGGCCATCG (11/20) Tm = 57.3 ℃ Node 3 : ATACGGCGTG GTTTTTCGGG (12/20) Tm = 60.4 ℃ Node 4 : AAACGGTCGT AAGTGATGAA ( 8/20) Tm = 49.4 ℃ Node 5 : GCACAGTCCA CCTGTAGACA (11/20) Tm = 50.2 ℃ Node 6 : TATGTCCAGC TGTCGCAAAG (10/20) Tm = 53.6 ℃
16
Discussion - Trouble Shooting
Oligomer design : Tm calculation by combining nearest-neighbor model and GC % Higher melting temperature of PCR primers Hybridization : Variable temperature gradient Ligation : Formation of longer sequence Selection of desirable range of DNA by electrophoresis PCR : Annealing/denaturation temperature, Cycle variation Specific amplification of interesting strands PAGE : Gel percentage (resolution), Gradient temperature/%T
17
Constraints on the reactions
Oligomer design : higher Tm of oligomers which used as primers Hybridization : initial concentration (amount) of oligomers variation with weights Ligation : blunt/sticky end, slice of specific region PCR : annealing/denaturation temperature, cycle variation specific amplification of interesting strands PAGE : gel percentage (resolution), gradient temperature/%T Others
18
New DNA sequence design strategy
Sequencial increase of denaturation temperature in PCR more amplification of relative low Tm strands Tm decision factor GC% stacking energy Vertex sequence regular melting temperature both NN and GC% Weight sequence in Edge sequence reflection of weight by GC% in longer strands, there’s no effect by NN method
Similar presentations
© 2025 SlidePlayer.com. Inc.
All rights reserved.