Download presentation
Presentation is loading. Please wait.
Published bySarah Farmer Modified over 6 years ago
1
Supplemental slides for CSE 327 Prof. Jeff Heflin
Ch. 18 – Learning Supplemental slides for CSE 327 Prof. Jeff Heflin
2
Decision Tree Learning
function DEC-TREE-LEARN(examples,attribs,default) returns a decision tree if examples is empty then return default else if all examples have the same classification then return the classification else if attribs is empty then return MAJORITY-VALUE(examples) else best CHOOSE-ATTRIBUTE(attribs,examples) tree a new decision tree with root test best m MAJORITY-VALUE(examples) for each value vi of best do examplesi {elements of examples with best = vi} subtree DEC-TREE-LEARN(examplesi,attribs – best, m) add a branch to tree with label vi and subtree subtree return true From Figure 18.5, p. 658
3
Decision Tree Data Set Example Color Size Shape Goal Predicate X1 blue
small square no X2 green large triangle X3 red circle yes X4 X5 yellow X6 X7 X8
4
Decision Tree Result Shape? No No Color? Yes No Yes Yes
+: X3,X6 -: X1,X2,X4,X5,X7,X8 Shape? circle square triangle +: -: X2,X7 +: -: X1,X4,X8 +: X3,X6 -: X5 No No Color? green red yellow blue +: X3,X6 -: +: -: X5 +: -: +: -: Yes No Yes Yes
Similar presentations
© 2024 SlidePlayer.com. Inc.
All rights reserved.