Download presentation
Presentation is loading. Please wait.
1
Alpha Blending and Smoothing
Team M3: Richard Bohn (M31) Diana Henderson (M32) Andi Hermawan (M33) Jenneca Ward (M34) Overall Project Objective: Design a portion of a mobile graphics card, performing alpha blending and smoothing operations using minimal area and power. Stage: Short Final Presentation, 4/14/03 Design Manager: David Jou
2
What is Alpha Blending? Merging two images together, giving images a degree of transparency Combines semi-transparent foreground with background color to create an in-between blend Useful to gradually fade images together
3
What about Smoothing? Removes the sharp edges in an image, making it more appealing to the eye Often used for fonts
4
Applications World of mobile gaming rapidly expanding on both PDA and cell phone platforms.
5
Alpha Blending α 1-α * * + Alpha-Blended Pixel
6
Hardware: Block Diagram for One Color
α B RegFile 2 R 1 R 2 1 3 2 1 R 3 2 1 R 3 2 1 R 3 2 1 R R 3 2 3 2 R 4 3 2 R 4 3 R R 5 4 3 5 4 3 R 5 4 3 R 5 4 3 R RegFile 1 R R R R R R 5 4 R The RegFiles help in the smoothing process 5 R R R 6 R R 7 6 R 8 7 R R A R 8 R 2:1 MUX 2:1 MUX α Instr P1 A*B P2 α OUT
7
Smoothing Algorithm RegFile 1 RegFile 2 Stream in User’s Pixel
Store average of surrounding pixels Pixel X puts 1/8 of its value in all surrounding pixels X RegFile 2 X/8 X/8 X/8 X/8 X/8 X/8 X/8 X/8
8
Hardware: The Big Picture
Reset Clock 6 - Bit Alpha 1-Bit Out Valid Our Chip(s) 1-Bit Instruction 1-Bit In Ready 16 Bit Pixel A 16-Bit Output 16 Bit Pixel B
9
How Do We Get This to Work?
10
Portion of C Model
11
Portion of C-Model Output
12
Portion of Behavioral Verilog code
13
Behavioral Verilog Simulation Results
14
Structural Verilog Code
15
Verilog Simulation Results
16
Transistor Count Evolution
SRAM (64x16 bits) 7,000 Transistors ROM 100 Transistors 30 6-bit Fractional Multipliers 10,000 Transistors 27 6-bit Adders 3500 Transistors Control 2000 Transistors Registers 3000 Transistors Total 25600 Transistors
17
Transistor Count Evolution
CHANGE: 6-bit Fractional Multipliers 2000 Transistors SIGNIFICANT DECREASE!! 27 6-bit Adders 3500 Transistors Control Registers: 32 16-bit registers replaced SRAM 10000 Transistors Total 17500 Transistors
18
Transistor Count Evolution
Part Transistors Quantity Total 2:1 Mux 60 6 360 4:1 Mux 144 3 432 Adder 168 27 4536 Multiplier 940 5640 Register 90 93 8370 Counter 210 2 420 Control 2000 1 TOTAL 21758
19
Transistor Count Evolution
Part Transistors Quantity Total 2:1 Mux 36 6 108 4:1 Mux 132 3 396 Adder 168 27 4536 Multiplier 940 5640 Register 90 93 8370 Counter 210 2 420 Control 178 1 TOTAL 19648
20
Transistor Count Evolution Ends
Part Transistors Quantity Total 2:1 Mux 36 6 108 4:1 Mux 132 3 396 Adder 168 27 4536 Multiplier 940 5640 Register 90 93 8370 Counter 210 2 420 Control 178 1 TOTAL 19648 NEED TO UPDATE!! w/Final trans. counts
21
Original Floor Plan (Components)
114 15 236 7 2:1 Mux 13 I/O Register 25 118 4:1 Mux 15 Reg File 2 200 106 Reg File 1 21 Adder 157 115 114 180 Multiplier 249 39 Counter Control Logic 157
22
Original Floor Plan (Module)
370 Register (Pixel 1) Register (Pixel 2) Reg File 2 Reg File 1 Register (Alpha) Routing Routing 470 2:1 Mux 2:1 Mux Multiplier Multiplier Multiplier Adder Register (Output)
23
Original Floor Plan (System)
740 Module 1 (Red) Module 2 (Blue) 840 Control Logic Module 3 (Green) Area: 621,600 µm2 Aspect Ratio: 1.135:1
24
Updated Floor Plan (Module)
25
Register Modified Floor Plan
26
Finalized Floorplan (Module)
27
Updated Floor Plan (System)
Red Module Area: 353,500 µm2 Aspect Ratio: 1.386:1 Blue Module 505 µm Green Module Control Logic/Counter
28
Schematics
29
Half Adder Schematic
30
2:1 Mux (6-bit)
31
4:1 Mux (6-bit)
32
Multiplier (6 x 6)
33
Ripple Carry Adder (6-bit)
34
Register (6-bit)
35
RegFile1
36
RegFile2
37
Control Logic
38
Counter
39
Overall Schematic Red Module Input (Pixel A) Input (PixelB) Output
Control Logic Green Module Alpha Blue Module
40
Layouts
41
Half Adder Layout
42
Full Adder Final Design:
43
2:1 Mux (6-bit) Original Design: Final Design:
44
4:1 Mux (6-bit) Original Design: Final Design:
45
Multiplier (6 x 6) Final Design:
46
Ripple Carry Adder (6-bit)
Final Design:
47
Register (1-bit) Final Designs
48
Register (6-bit) Final Designs:
49
RegFile1 Final Design:
50
RegFile2 Final Design:
51
Control Logic Original Design Final Design
52
Counter6 Original Design: Final Design:
53
Overall Chip Layout 753 um 543 um
54
Component Schematic/Layout Verification
55
6-bit 2:1 Mux – 1 GHz Schematic Simulation Extracted Simulation
Rise Time: ps Rise Time: ps
56
6-bit 2:1 Mux - Outputs
57
6-bit 4:1 Mux – 500 MHz Schematic Simulation Extracted Simulation
Rise Time: ps Rise Time: ps
58
6-bit 4:1 Mux - Outputs
59
Ripple Carry Adder – 350 MHz
Schematic Simulation Extracted Simulation Rise Time: ps Rise Time: ps
60
Ripple Carry Adder - Outputs
61
Register – 833 MHz Rise Time: ps
62
RegFile1 – 833 MHz Rise Time: ps
63
RegFile2 – 200 Mhz
64
Control Logic – 500 MHz Schematic Simulation Extracted Simulation
Rise Time: ps Rise Time: ps
65
Control Logic – Outputs
66
Control Logic – Outputs (cont)
67
Counter – 20 MHz Schematic Simulation Extracted Simulation
Rise Time: ps Rise Time: ns
68
Counter - Outputs
69
Full Adder – 600 MHz Schematic Simulation Extracted Simulation
Rise Time: ps Rise Time: ps
70
Full Adder Outputs
71
Full Chip Verification
72
Schematic Simulation Entire Chip - Inputs (50 MHz)
73
Schematic Simulation Entire Chip - Inputs (50 MHz)
74
Schematic Simulation Entire Chip - Outputs (50 MHz)
75
Schematic Simulation Entire Chip - Outputs (50 MHz)
76
Extracted Simulation Entire Chip – Outputs (50 MHz) at 2.4 Volts
77
Extracted Simulation Entire Chip – Outputs (50 MHz) at 2.4 Volts
78
Extracted Simulation Entire Chip – Outputs (50 MHz) at 2.35 Volts
79
Extracted Simulation Entire Chip – Outputs (50 MHz) at 2.35 Volts
80
Extracted Simulation Entire Chip – Outputs (50 MHz) BAD 2.0V
81
Extracted Simulation Entire Chip – Outputs (50 MHz) BAD 2.0V
82
Average Power vs. VDD – Summary
Good Bad
83
Questions?
Similar presentations
© 2025 SlidePlayer.com. Inc.
All rights reserved.