Download presentation
Presentation is loading. Please wait.
Published byDeborah Powell Modified over 6 years ago
1
Some Irradiation Results from a Chip in UMC018 Technology
Peter Fischer for Christian Kreidl Heidelberg University P. Fischer, ziti, Heidelberg
2
Summary UMC018 Chip was irradiated with X-rays to 7.5Mrad
No degradation after annealing Strange effects around 1.2Mrad Work done in the frame of the DEPFET project Measurements by Christian Kreidl Chip by Ivan Peric P. Fischer, ziti, Heidelberg
3
current memory cells to subtract pedestal using current memory cells
The Chip DCD1 = DEPFET Current Digitizer Readout Chip for DEPFET Sensor columns DEPFET Sensor goes here… DCD1 Chip current memory cells to subtract pedestal 8 bit ADCs using current memory cells P. Fischer, ziti, Heidelberg
4
More Details... P. Fischer, ziti, Heidelberg Test Injection current
Regulated Cascode Sampling Current Subtract 2 ADCs ADC Output Logic Generate ADC + memory cell control signals ADC result calculation, MUX per pixel 3 x 6 lines ADC Steering Signals Serializer Sample Monitoring Pad Clock Divider 600MHz sync for FPGA, Switcher P. Fischer, ziti, Heidelberg
5
Chip Layout & Design UMC 0.18µm technology, 2 x MiniASIC size
ADC in radhard layout (enclosed NMOS, guard rings) Digital part without any precautions 72 inputs P. Fischer, ziti, Heidelberg
6
Pixel Layout Size x: 180µm Size y: 110µm regulated cascode
two 8 bit algorithmic current mode ADCs working interleaved digital stuff (conservative layout) bump pad with 60µm opening test injection P. Fischer, ziti, Heidelberg
7
Chip Test Setup Chip glued & bonded to PCB – no cover Readout via USB
P. Fischer, ziti, Heidelberg
8
Irradiation Facility in Karlsruhe
60 keV X-Ray tube at Institut für Nuclear Physics, Karlsruhe krad/h (depending on distance), calibrated setup Thanks to Dr. Simonis, Mr. Dierlamm and Mr. Ritter for help! P. Fischer, ziti, Heidelberg
9
Irradiation Dose: DCD Operation Mode Measurements (while tube is on!):
krad/h (d=180mm) = 3.1 Mrad krad/h (d=100mm) = 4.4 Mrad Total = 7.5 Mrad DCD Operation Mode clock running permanently control registers loaded every 30s with default values (precaution against SEU) Measurements (while tube is on!): current consumption on VDD (= analog + digital) on selected pixels: - Current memory cell operating range - ADC characteristics - Test injection current value P. Fischer, ziti, Heidelberg
10
Current consumption Total supply current (analog + digital)
Current rises until 1.2Mrad, then settles to pre-rad value 1.2Mrad = pre-rad Probably bit flip In Bias DACs P. Fischer, ziti, Heidelberg
11
Current Memory Cells Cell keeps input voltage constant within ± 10µA
P. Fischer, ziti, Heidelberg
12
ADC Characteristic (ADC value vs. Injection DAC)
Test current injected via ON-CHIP injection DAC SEUs during measurement (more at 1.2Mrad !) most some ADCs BROKEN after 7Mrad and 6 days annealing: back to pre-rad behavior Pixel 59 Pixel 71 BROKEN @ 1.2Mrad 0 Mrad = after anneal. 7 Mrad Many SEUs P. Fischer, ziti, Heidelberg
13
Test Injection Current vs. DAC value
Test injection current is ok (not dead). Some variation. P. Fischer, ziti, Heidelberg
14
ADC Histograms Plot deviation from straight line
45nA 70nA Mrad) 44nA (7 day anneal) P. Fischer, ziti, Heidelberg
15
ADC noise map All ADCs back to initial values after anneal
Readout problems due to setup Readout problems due to setup P. Fischer, ziti, Heidelberg
16
Summary No degradation after 7Mrad of 60keV X-rays
Strange effects at 1.2 Mrad (power higher, ADC dead) P. Fischer, ziti, Heidelberg
17
Thank you! P. Fischer, ziti, Heidelberg
18
Bump Bonding Status in HD
Peter Fischer, ziti, Uni Heidelberg for Christian Kreidl P. Fischer, ziti, Heidelberg
19
Reminder We do gold stud bumping: Key parameters: Advantages:
Create a gold sphere on bonder Place ball on chip, Thermocompress, rip off wire Place all bumps Flip & press & heat (~50g / bump) Can put bumps on both sides to reduce forces Can put isotropic glue with conducting particles Key parameters: Diameter of balls ~ 45µm Min. bond pad size ~ 60µm Min pitch ~ 100µm Advantages: single chip (prototype) process, in house, cheap Drawbacks: sequential, limited # of pads, large force, possible destruction of electronics under pad, need hard substrate, no rework P. Fischer, ziti, Heidelberg
20
Tests with Dummy Chips Aluminum on Silicon structures
Substrate and ‘chip’ Trace pattern to check contact & shorts P. Fischer, ziti, Heidelberg
21
Chip with Bumps P. Fischer, ziti, Heidelberg
22
Flipped Assemblies 80g/bump: all bumps connected, no shorts
20g/bump: 4 of 6 snakes connected, chip fell off P. Fischer, ziti, Heidelberg
23
Large Size Module Mechanical demonstrator of ILC vertex detector module no electrical tests check how to handle a large silicon device check how low pitch flipping works 16 DCD (dummy) chips 36 Switcher (dummy) chips 11,9 cm x 1,6 cm No electrical test possibilities 8 ‘DCD’ chips 8 ‘DCD’ chips 2 x 18 ‘Switcher’ chips P. Fischer, ziti, Heidelberg
24
Placing Chips Close to Each Other (side view)
Switcher (dummy) chips 164 bumps each1 ,4mm x 5,8mm 60g/bump = 9,8kg/chip Edge of flip tool P. Fischer, ziti, Heidelberg
25
ILC Mechanical Sample P. Fischer, ziti, Heidelberg
26
Minimum gap 50µm gap 50µm gap P. Fischer, ziti, Heidelberg
P. Fischer, ziti, Heidelberg
27
Module End 224 bumps/chip, 1.35mm x 4.95mm, 13.4kg/chip 200µm gap
P. Fischer, ziti, Heidelberg
28
Full sample One module populated with 52 chips No failures !
P. Fischer, ziti, Heidelberg
29
Effort Bonding process: cleaning, mounting, aligning, bumping
Switcher: 11min DCD: 13min Flipping process: pickup, aligning, thermocompression 9 min 2 days of work including learning Improvements: build better mounting device for single chip bumping (mechanical clamp) P. Fischer, ziti, Heidelberg
30
Thank you! P. Fischer, ziti, Heidelberg
31
ADC Design in Heidelberg
Peter Fischer, ziti, Uni Heidelberg ADC Design: Ivan Peric P. Fischer, ziti, Heidelberg
32
Content Algorithmic / Pipeline ADC principles Voltage vs. Current Mode
ADC in DEPFET readout chip Reminder: ADC of David Muthers (Kaiserslautern) Comparison of figures of Merit P. Fischer, ziti, Heidelberg
33
Algorithmic (Cyclic) ADC
Idea: Compare signal to half scale generate BIT If BIT = 1: subtract half scale Multiply result by two Restart over again Every cycle produces a new bit Very popular architecture Resolution limited by precision of Compare / Subtract / Multiply Comparator requirements are relaxed by two threshold per stage (and some error correction) P. Fischer, ziti, Heidelberg
34
ADC Stage + + - ADC DAC k Bit P. Fischer, ziti, Heidelberg
35
Bit Alignment + RSD Correction
Pipeline ADC Shift value through many stages Can process one new value per cycle More hardware Faster Can scale cells for lower precision in later cells Stage 1 Stage 2 Stage m-1 Stage m Vin 2 2 2 2 Bit Alignment + RSD Correction P. Fischer, ziti, Heidelberg
36
Voltage vs. Current Signal can be voltage or current Voltage: Current
Often natural quantity delivered by circuit Comparison simple Add / Subtract & duplication with switched capacitor circuits Large swings Needs linear capacitors Current May require U->I conversion Low swing operation Add / Subtract very simple Duplication with multiple current copy & add Can do with simple, small capacitors No obvious winner P. Fischer, ziti, Heidelberg
37
Standard Current Memory Cell
Tracking phase: Diode connected transistor Sample on gate capacitance Drawbacks: Charge injection is signal dependent Low output resistance & current dependent Input potential current dependent Large storage cap (low leak) decreases speed Iin / Iout P. Fischer, ziti, Heidelberg
38
Pixel Layout Two 8 Bit ADCs: Current memory cells, Comparators,
Reference sources. Optimized, rad hard layout ADC timing signals (can be shared) 110µm 2 x Output Logic (shift registers…) Very conservative layout Using standard cells P. Fischer, ziti, Heidelberg
39
ADC Characteristic 8 Bit ADC output vs. injection DAC value
P. Fischer, ziti, Heidelberg
40
ADC Noise / INL Plot deviation from ideal value for various inputs
Width mostly from noise in input stage P. Fischer, ziti, Heidelberg
41
Pipeline ADC (Design Study)
P. Fischer, ziti, Heidelberg
42
Comparison: ADC from D. Muthers, Kaiserslautern
Voltage mode Cyclic & Pipeline version Early version used in TRAP chip P. Fischer, ziti, Heidelberg
43
Comparison FoM = P / 2ENoB / f * 1012 (small is good)
HD, I mode Cyclic HD, I mode Pipeline KL, V mode KL, V mode Pipeline Commercial IQ-Analog ENOBs ~ 8 (9) ~ 9 (design) ~ fin=5MHz ~ 9.7 9 speed 6 MS/s 25 MS/s 10 MS/s 75 MS/s 80 MS/s Power 1 mW 4.5 mW 9.5 mW 30 mW 8 mW Layout area ~3.000 µm2 (rad hard) ~ µm2 µm2 (non rad hard) > µm2 µm2 (0.13µm) Additionally Shift register Delay registers ??? - FoM [pJ/conv] 0.65 0.35 1.6 0.48 0.2 FoM = P / 2ENoB / f * (small is good) ADC from HD are VERY small P. Fischer, ziti, Heidelberg
44
Thank you! P. Fischer, ziti, Heidelberg
45
Simple Serial Data Driver
Peter Fischer, ziti, Uni Heidelberg P. Fischer, ziti, Heidelberg
46
Goal Study a serial driver suited to directly drive an FPGA
Find out how Complex Large Power hungry it is. Later: study copper transmission: how long can we go ? How fast can we go ? For which type of cable ? for which power requirement ? P. Fischer, ziti, Heidelberg
47
Design choices Use (free) Aurora protocol from Xilinx No back channel
No channel bonding Minimize protocol engine Use radiation hard library for a test P. Fischer, ziti, Heidelberg
48
Aurora – Protocol Physical layer interface – electrical levels, clock encoding, symbol coding Channel initialization and error handling Link layer: Beginning / End of data IDLE Clock compensation 8B/10B encoding Arbitrary data format, Data packets with arbitrary length 4 Phases: Initialization Synchronization of receiver clock (send some syncs) Data transmission Idle Must inject clock compensation characters from time to time P. Fischer, ziti, Heidelberg
49
Components FIFO: (data buffer) Control FSM 8b/10b Encoder Serializer
LVDS-Driver P. Fischer, ziti, Heidelberg
50
Initialisation RESET TXRES_0 TXRES_1 P. Fischer, ziti, Heidelberg
ln_cnt < N+2 TXRES_1 zur Validierung res_cnt < 3 P. Fischer, ziti, Heidelberg
51
Validation VAL/A/ VAL/R/ VAL/K/ CV_0 CV_1 P. Fischer, ziti, Heidelberg
von Initialisierung idle_cnt = 32 idle_cnt < 32 idle_cnt = 32 VAL/K/ val_cnt = 60 val_cnt = 60 val_cnt = 60 CV_0 CV_1 IDLE / Daten P. Fischer, ziti, Heidelberg
52
Idle CC_1 IDLE/A/ IDLE/R/ IDLE/K/ P. Fischer, ziti, Heidelberg
ev_cnt < 12 CC_1 ccc_cnt = 10000 ccc_cnt = 10000 IDLE/A/ idle_cnt = 32 IDLE/R/ ccc_cnt = 10000 von Daten / Valid. idle_cnt = 32 idle_cnt < 32 IDLE/K/ valid_data & even valid_data & even valid_data & even Daten P. Fischer, ziti, Heidelberg
53
Data Transfer CC_3 CC_4 SCP_0 SCP_1 DATA CC_2_0 CC_2_1 CC_5_1 CC_5_0
von IDLE / Val. valid_data !valid_data & !even DATA PADDING CC_2_0 CC_2_1 !valid_data & even !valid_data CC_5_1 CC_5_0 ECP_1 ECP_0 IDLE !valid_data valid_data Daten P. Fischer, ziti, Heidelberg
54
Serializer For simplicity: Realize in CMOS
Use shift register with load Load generation most time critical Several circuits have been compared Minimal speed: 600 MHz Reached 1.9GHz with standard cells P. Fischer, ziti, Heidelberg
55
Test circuit on Xilinx Evaluation board
Generate Aurora compatible parallel data stream Send to MGT serializer Loopback via SATA cable Receiver uses Aurora protocol FSM, 8b/10b P. Fischer, ziti, Heidelberg
56
Sample result: data transfer and Idle
P. Fischer, ziti, Heidelberg
57
Synthesis with VST library
First Using VST library P. Fischer, ziti, Heidelberg
58
Simplification Try designs with NO clock compensation characters
P. Fischer, ziti, Heidelberg
59
Synthesis with Rad hard library
P. Fischer, ziti, Heidelberg
60
Power estimation No LVDS driver (which will dominate!)
Using VST Library Rad hard ~ x4 P. Fischer, ziti, Heidelberg
61
Place & Route ~200 x 200mm2 for rad had design
P. Fischer, ziti, Heidelberg
62
Next steps Study realistic, fast LVDS driver
Study cable properties & modelling First step: Simulated eye-diagram with Kaiserslautern driver + 10 cable, 24AWG (no pre-emphasis) P. Fischer, ziti, Heidelberg
63
Thank you! P. Fischer, ziti, Heidelberg
Similar presentations
© 2025 SlidePlayer.com. Inc.
All rights reserved.