Download presentation
Presentation is loading. Please wait.
1
NATIONAL TECHNICAL UNIVERSITY OF ATHENS
CHEMICAL ENGINEERING SCHOOL COMPUTATIONAL FLUID DYNAMICS UNIT “Optimal Decision Strategy for a Renewable Energy System consisting of Wind Generators and Fuel Cell Stacks” P. L. Zervas*, H. Sarimveis, J. Α. Palyvos, N. C. Markatos Fuel Cell Science & Technology 2008, 7-9 October, Copenhagen P. L. Zervas, H. Sarimveis, J. Α. Palyvos, N. C. Markatos, Fuel Cell Science & Technology 2008, Copenhagen NTUA, Chemical Engineering School, Computational Fluid Dynamics Unit
2
Objective of the Study Development of an optimal-decision strategy for a Renewable Energy System with Hydrogen Storage (RESHS) based on the Model Predictive Control rolling horizon concept Qualitative comparison between Wind and Solar energy in a RESHS P. L. Zervas, H. Sarimveis, J. Α. Palyvos, N. C. Markatos, Fuel Cell Science & Technology 2008, Copenhagen NTUA, Chemical Engineering School, Computational Fluid Dynamics Unit
3
Purchased Electricity
Hybrid Power Generation System Proposed RESHS PDir (kW) Wind Generator Consumer WGOut (kW) CS (kW) ELIn (kW) ELOut (m3/h) FCIn (m3/h) FCOut (kW) INVIn (kW) INVOut (kW) Metal Hydride Tanks 1 Electrolyzer Fuel Cells 2 Inverter 3 ETG (kW) EFG (kW) Inventory Purchased Electricity Sold Electricity P. L. Zervas, H. Sarimveis, J. Α. Palyvos, N. C. Markatos, Fuel Cell Science & Technology 2008, Copenhagen NTUA, Chemical Engineering School, Computational Fluid Dynamics Unit
4
Model Predictive Control rolling horizon concept
Past Future Future values of the Objective Function ObjF(t) u(t+i|t) Future values of the Decision Variables u(t) t-n t t+i t+M t+N Prediction horizon P. L. Zervas, H. Sarimveis, J. Α. Palyvos, N. C. Markatos, Fuel Cell Science & Technology 2008, Copenhagen NTUA, Chemical Engineering School, Computational Fluid Dynamics Unit
5
Formulation of a Mixed Integer Non-Linear Programming (MINLP) optimization problem
Decision Variables Energy consumed by the electrolyzer Purchased/Sold Electricity from/to the grid Amount of Hydrogen consumed by Fuel Cells Stack Amount of Hydrogen stored in Metal Hydride Tanks Objective Function to minimize Cost of electricity Energy produced by the Wing Generator Consumption Profile Data Formulation and solution of a Mixed Integer Non-Linear Programming Problem P. L. Zervas, H. Sarimveis, J. Α. Palyvos, N. C. Markatos, Fuel Cell Science & Technology 2008, Copenhagen NTUA, Chemical Engineering School, Computational Fluid Dynamics Unit
6
Overall electrical energy balance
Equations-Constraints Electrolyzer and fuel cell performance equations Hydrogen mass balance Energy balance at node 1 Energy balance at node 2 Energy balance at node 3 Inverter Overall electrical energy balance P. L. Zervas, H. Sarimveis, J. Α. Palyvos, N. C. Markatos, Fuel Cell Science & Technology 2008, Copenhagen NTUA, Chemical Engineering School, Computational Fluid Dynamics Unit
7
Purchased Electricity
Objective Function PDir (kW) Wind Generator Consumer WGOut (kW) ELIn (kW) ELOut (m3/h) FCIn (m3/h) FCOut (kW) INVIn (kW) INVOut (kW) CS (kW) Metal Hydride Tanks 1 Electrolyzer Fuel Cells 2 Inverter 3 EFG (kW) ETG (kW) Inventory Purchased Electricity Sold Electricity P. L. Zervas, H. Sarimveis, J. Α. Palyvos, N. C. Markatos, Fuel Cell Science & Technology 2008, Copenhagen NTUA, Chemical Engineering School, Computational Fluid Dynamics Unit
8
Specifications of the installed hybrid system
Scenario Wind Generator 1.5kWp Electrolyzer 0.25Nm3/h Fuel Cell Stack 1.2kW Metal Hydride Tanks 5m3 P. L. Zervas, H. Sarimveis, J. Α. Palyvos, N. C. Markatos, Fuel Cell Science & Technology 2008, Copenhagen NTUA, Chemical Engineering School, Computational Fluid Dynamics Unit
9
WG Power Generation-Load Profile (Deterministic)
time (h) P. L. Zervas, H. Sarimveis, J. Α. Palyvos, N. C. Markatos, Fuel Cell Science & Technology 2008, Copenhagen NTUA, Chemical Engineering School, Computational Fluid Dynamics Unit
10
WG Power Generation-Load Profile (Updated)
P. L. Zervas, H. Sarimveis, J. Α. Palyvos, N. C. Markatos, Fuel Cell Science & Technology 2008, Copenhagen NTUA, Chemical Engineering School, Computational Fluid Dynamics Unit
11
Deterministic and Updated decision strategies with true WG Power Output and Consumption profiles
P. L. Zervas, H. Sarimveis, J. Α. Palyvos, N. C. Markatos, Fuel Cell Science & Technology 2008, Copenhagen NTUA, Chemical Engineering School, Computational Fluid Dynamics Unit
12
Summary of Deterministic and Updated decision strategies (RESHS based on Wind Energy)
Total Purchased Energy (kWh) Total Discarded Energy Objective function (€) Deterministic schedule using predicted WGOut & CS temporal profiles 2.0305 0.0 0.18 Deterministic schedule using true WGOut & CS temporal profiles 23.619 3.36 Updated schedule using true WGOut & CS temporal profiles 1.11 P. L. Zervas, H. Sarimveis, J. Α. Palyvos, N. C. Markatos, Fuel Cell Science & Technology 2008, Copenhagen NTUA, Chemical Engineering School, Computational Fluid Dynamics Unit
13
PV array Power Generation-Load Profile (Updated)
P. L. Zervas, H. Sarimveis, J. Α. Palyvos, N. C. Markatos, Fuel Cell Science & Technology 2008, Copenhagen NTUA, Chemical Engineering School, Computational Fluid Dynamics Unit
14
Deterministic and Updated decision strategies with true PV Power Output and Consumption profiles
P. L. Zervas, H. Sarimveis, J. Α. Palyvos, N. C. Markatos, Fuel Cell Science & Technology 2008, Copenhagen NTUA, Chemical Engineering School, Computational Fluid Dynamics Unit
15
Deterministic and Updated decision strategies with true WG Power Output and Consumption profiles
P. L. Zervas, H. Sarimveis, J. Α. Palyvos, N. C. Markatos, Fuel Cell Science & Technology 2008, Copenhagen NTUA, Chemical Engineering School, Computational Fluid Dynamics Unit
16
Conclusions Development of a model that realistically describes the operation and the constraints of any hybrid system consisting of RES and hydrogen technologies Formulation and solution of an optimization problem that minimizes the cost for purchasing electrical energy. The formulation takes into account the estimated RES power generation over a future prediction horizon and a profile of the energy demand over the same time horizon The developed optimal making decision framework ensures the minimum electricity to be purchased from the grid making the system to operate in an autonomous way P. L. Zervas, H. Sarimveis, J. Α. Palyvos, N. C. Markatos, Fuel Cell Science & Technology 2008, Copenhagen NTUA, Chemical Engineering School, Computational Fluid Dynamics Unit
17
Finally the proposed model..
..may prove to be a very useful tool for optimal decision making in hybrid power generation systems which combine RES and hydrogen technologies P. L. Zervas, H. Sarimveis, J. Α. Palyvos, N. C. Markatos, Fuel Cell Science & Technology 2008, Copenhagen NTUA, Chemical Engineering School, Computational Fluid Dynamics Unit
18
THANK YOU!!! pzervas@chemeng.ntua.gr
P. L. Zervas, H. Sarimveis, J. Α. Palyvos, N. C. Markatos, Fuel Cell Science & Technology 2008, Copenhagen NTUA, Chemical Engineering School, Computational Fluid Dynamics Unit
19
NATIONAL TECHNICAL UNIVERSITY OF ATHENS
CHEMICAL ENGINEERING SCHOOL COMPUTATIONAL FLUID DYNAMICS UNIT “Optimal Decision Strategy for a Renewable Energy System consisting of Wind Generators and Fuel Cell Stacks” P. L. Zervas*, H. Sarimveis, J. Α. Palyvos, N. C. Markatos Fuel Cell Science & Technology 2008, 7-9 October, Copenhagen P. L. Zervas, H. Sarimveis, J. Α. Palyvos, N. C. Markatos, Fuel Cell Science & Technology 2008, Copenhagen NTUA, Chemical Engineering School, Computational Fluid Dynamics Unit
20
APPENDIX P. L. Zervas, H. Sarimveis, J. Α. Palyvos, N. C. Markatos, Fuel Cell Science & Technology 2008, Copenhagen NTUA, Chemical Engineering School, Computational Fluid Dynamics Unit
21
P. L. Zervas, H. Sarimveis, J. Α. Palyvos, N. C
P. L. Zervas, H. Sarimveis, J. Α. Palyvos, N. C. Markatos, Fuel Cell Science & Technology 2008, Copenhagen NTUA, Chemical Engineering School, Computational Fluid Dynamics Unit
22
Electrolyzer – Fuel Cell performance equations
P. L. Zervas, H. Sarimveis, J. Α. Palyvos, N. C. Markatos, Fuel Cell Science & Technology 2008, Copenhagen NTUA, Chemical Engineering School, Computational Fluid Dynamics Unit
23
Wind Generator performance equations
P. L. Zervas, H. Sarimveis, J. Α. Palyvos, N. C. Markatos, Fuel Cell Science & Technology 2008, Copenhagen NTUA, Chemical Engineering School, Computational Fluid Dynamics Unit
24
Global Solar Irradiance Model based on NNM techniques
P. L. Zervas, H. Sarimveis, J. Α. Palyvos, N. C. Markatos, Fuel Cell Science & Technology 2008, Copenhagen NTUA, Chemical Engineering School, Computational Fluid Dynamics Unit
25
Part I: Prediction of the PV Power Generation
Global Solar Irradiance on tilted surface Location data, astronomical data, slope of the PV Array Global Solar Irradiance on horizontal surface Neural Network Model Sun Ambient Temperature PVOut=f(GSIT,Tamb) V I Photovoltaic Αrray P. L. Zervas, H. Sarimveis, J. Α. Palyvos, N. C. Markatos, Fuel Cell Science & Technology 2008, Copenhagen NTUA, Chemical Engineering School, Computational Fluid Dynamics Unit
26
August P. L. Zervas, H. Sarimveis, J. Α. Palyvos, N. C. Markatos, Fuel Cell Science & Technology 2008, Copenhagen NTUA, Chemical Engineering School, Computational Fluid Dynamics Unit
27
Summary of Deterministic and Updated decision strategies (RESHS based on Solar Energy)
Total Purchased Energy (kWh) Total Discarded Energy Objective function (€) Deterministic schedule using predicted PVOut & CS temporal profiles 9.7808 4.9563 0.63 Deterministic schedule using true PVOut & CS temporal profiles 1.64 Updated schedule using true PVOut & CS temporal profiles 7.9778 0.79 P. L. Zervas, H. Sarimveis, J. Α. Palyvos, N. C. Markatos, Fuel Cell Science & Technology 2008, Copenhagen NTUA, Chemical Engineering School, Computational Fluid Dynamics Unit
28
Decision strategies for November reference day
29
P. L. Zervas, H. Sarimveis, J. Α. Palyvos, N. C
P. L. Zervas, H. Sarimveis, J. Α. Palyvos, N. C. Markatos, Fuel Cell Science & Technology 2008, Copenhagen NTUA, Chemical Engineering School, Computational Fluid Dynamics Unit
30
Decision strategies for March reference day
P. L. Zervas, H. Sarimveis, J. Α. Palyvos, N. C. Markatos, Fuel Cell Science & Technology 2008, Copenhagen NTUA, Chemical Engineering School, Computational Fluid Dynamics Unit
31
Part II: PV Power Generation-Load Profile (Deterministic)
P. L. Zervas, H. Sarimveis, J. Α. Palyvos, N. C. Markatos, Fuel Cell Science & Technology 2008, Copenhagen NTUA, Chemical Engineering School, Computational Fluid Dynamics Unit
32
Formulation of the LP optimization problem
minfTx A*x<=b x Aeq*x=beq lb<=x<=ub x = linprog(f, [], [],Aeq,beq) 7 variables*72 time periods 4*72 time periods (equalities) 1*72 time periods (inequatlities) P. L. Zervas, H. Sarimveis, J. Α. Palyvos, N. C. Markatos, Fuel Cell Science & Technology 2008, Copenhagen NTUA, Chemical Engineering School, Computational Fluid Dynamics Unit
33
Objective Function Constraints: Part I
P. L. Zervas, H. Sarimveis, J. Α. Palyvos, N. C. Markatos, Fuel Cell Science & Technology 2008, Copenhagen NTUA, Chemical Engineering School, Computational Fluid Dynamics Unit
34
Alternative Equations to previous “IF statements”
Constraints: Part II Alternative Equations to previous “IF statements” P. L. Zervas, H. Sarimveis, J. Α. Palyvos, N. C. Markatos, Fuel Cell Science & Technology 2008, Copenhagen NTUA, Chemical Engineering School, Computational Fluid Dynamics Unit
Similar presentations
© 2025 SlidePlayer.com. Inc.
All rights reserved.