Presentation is loading. Please wait.

Presentation is loading. Please wait.

Neutral Particles.

Similar presentations


Presentation on theme: "Neutral Particles."β€” Presentation transcript:

1 Neutral Particles

2 Neutron detectors Neutron detectors do not detect neutrons but products of neutron interaction! James Chadwick, Nature 132 (1932) 3252

3 General detection principle
Neutron detectors do not detect neutrons but products of neutron interaction! Detection of a neutron is a sequential process 1. Interaction of the incident neutron: neutron transport 2. Transport of secondary particles to or within sensing elements hadron, ion, photon transport 3. Primary ionization by secondary particles 4. Conversion to optical photons, gas amplification: Transport of electrons and optical photons 5. Conversion to electrical signal external converter (radiator) converter = detector

4 Interaction of Neutrons
Indirect detection technique: induce neutrons to interact and produce charged particles. 𝑛+ 6 𝐿𝑖 →𝛼+ 3 𝐻+4.78 𝑀𝑒𝑉 β‡’ 𝐿𝑖 𝑇𝑙 π‘ π‘π‘–π‘›π‘‘π‘–π‘™π‘™π‘Žπ‘‘π‘œπ‘Ÿ 𝑛+ 10 𝐡 →𝛼+ 7 𝐿𝑖 𝑀𝑒𝑉 β‡’ 𝐡 𝐹 3 π‘”π‘Žπ‘  π‘π‘œπ‘’π‘›π‘‘π‘’π‘Ÿ 𝑛+ 3 𝐻𝑒 →𝑝+ 3 𝐻 𝑀𝑒𝑉 β‡’ 𝐻𝑒 βˆ’π‘“π‘–π‘™π‘™π‘’π‘‘ π‘π‘Ÿπ‘œπ‘π‘œπ‘Ÿπ‘‘π‘–π‘œπ‘›π‘Žπ‘™ π‘β„Žπ‘Žπ‘šπ‘π‘’π‘Ÿπ‘  𝑛+𝑝→𝑛+𝑝 β‡’ π‘π‘Ÿπ‘œπ‘π‘œπ‘Ÿπ‘‘π‘–π‘œπ‘›π‘Žπ‘™ π‘β„Žπ‘Žπ‘šπ‘π‘’π‘Ÿπ‘  π‘€π‘–π‘‘β„Ž 𝑒.𝑔. 𝐢 𝐻 4 𝑛 π‘ˆ β†’π‘“π‘–π‘ π‘ π‘–π‘œπ‘› π‘π‘Ÿπ‘œπ‘‘π‘’π‘π‘‘π‘  β‡’ π‘π‘œπ‘Žπ‘‘π‘’π‘‘ π‘π‘Ÿπ‘œπ‘π‘œπ‘Ÿπ‘‘π‘–π‘œπ‘›π‘Žπ‘™ π‘π‘œπ‘’π‘›π‘‘π‘’π‘Ÿπ‘  𝑛+π‘›π‘’π‘π‘™π‘’π‘’π‘ β†’β„Žπ‘Žπ‘‘π‘Ÿπ‘œπ‘› π‘π‘Žπ‘ π‘π‘Žπ‘‘π‘’ β‡’ π‘π‘Žπ‘™π‘œπ‘Ÿπ‘–π‘šπ‘’π‘‘π‘’π‘Ÿπ‘  Neutron detection and identification is important in the field of radiation protection because the relative biological effectiveness (quality factor) is high and depends on the neutron energy. 𝐻 π‘†π‘–π‘’π‘£π‘’π‘Ÿπ‘‘ =π‘žβˆ™π· πΊπ‘Ÿπ‘Žπ‘¦

5 Interaction of neutrons with matter
Neutron detectors can only be detected after conversion to charged particles or photons: Elastic scattering: AX(n,n)AX β†’ recoil nucleus AXZ+ Inelastic scattering: AX(n,n´γ)AX β†’ recoil nucleus AXZ+ , e- Radiative capture: AX(n,Ξ³)A+1Y β†’ e- Neutron emission: AX(n,2n)A-1Y β†’ radioactive daughter Charged-particle emission: AX(n,lcp)AΒ΄Y β†’ (lcp = p, d, t, Ξ±), recoil nucleus AΒ΄YZ+ Fission: n + AX β†’ A1X1 + A2X2 + Ξ½n β†’ fission fragments cross section relevant for neutron detection

6 Neutron Detection 𝑛+ 3 𝐻𝑒 β†’ 4 𝐻𝑒 βˆ— →𝑝+ 3 𝐻 , Q=0.765 MeV
Moderate neutrons in spheres of different sizes and then detect the charged particles in a proportional counter in the center. Bonner sphere

7 Pulse shape discrimination
Pulse shape discrimination (PSD) in organic scintillators are used in particularly liquid scintillators (NE213 / BC501A) PSD is due to long-lived decay of scintillator light caused by high dE/dx particle – neutron scatter interaction events causing proton recoil

8 BELEN - Neutron Detection
𝑛+ 3 𝐻𝑒 →𝑝+ 3 𝐻 +765 π‘˜π‘’π‘‰ 𝜎 π‘‘β„Ž =5400 𝑏 BELEN-30 (90x90x80 cm3 PE) 20 3He counters (20 atm) outer ring 10 3He counters (10 atm) inner ring efficiency (1 keV – 1MeV) ~ 40%

9 Large Area Neutron Detector
Large Area Neutron Detector (2m x 2m x 1m) neutron energy Tn ≀ 1 GeV Ξ”Tn/Tn = 5.3% efficiency ~1 passive Fe-converter

10 Neutrinos

11 Neutrinos Wolfgang Pauli

12 Interaction of Neutrinos
𝜈 𝑒 +𝑛→𝑝+ 𝑒 βˆ’ 𝜈 𝑒 +𝑝→𝑛+ 𝑒 + 𝜈 πœ‡ +𝑛→𝑝+ πœ‡ βˆ’ ; 𝜈 𝜏 +𝑛→𝑝+ 𝜏 βˆ’ 𝜈 πœ‡ +𝑝→𝑛+ πœ‡ + ; 𝜈 𝜏 +𝑝→𝑛+ 𝜏 + (discovery of the neutrino) Small cross section for MeV neutrinos: 𝜎 𝜈 𝑒 𝑁 = 4 πœ‹ βˆ™ 10 βˆ’10 ℏ𝑝 π‘š 𝑝 𝑐 =1.6βˆ™ 10 βˆ’44 π‘π‘š 2 π‘“π‘œπ‘Ÿ 0.5 𝑀𝑒𝑉 Rate of solar neutrinos interacting in the Earth: π‘βˆ™πœŽβˆ™π‘‘βˆ™πœŒβˆ™π‘“π‘™π‘’π‘₯=6.022βˆ™ βˆ™1.6βˆ™ 10 βˆ’44 π‘π‘š 2 βˆ™1.2βˆ™ 10 9 π‘π‘šβˆ™5.5 𝑔 π‘π‘š 3 βˆ™6.7βˆ™ π‘π‘š βˆ’2 𝑠 βˆ’1 =4 π‘π‘š βˆ’2 𝑠 βˆ’1 For high energies (GeV-range): 𝜎 𝜈 πœ‡ 𝑁 =0.67βˆ™ 10 βˆ’38 βˆ™ 𝐸 𝜈 𝐺𝑒𝑉 π‘π‘š 2 π‘›π‘’π‘π‘™π‘’π‘œπ‘›

13 Detecting the Neutrinos
Inverse beta decay: 𝜈 𝑒 +𝑝→ 𝑒 + +𝑛

14 Discovery, Reines & Cowan 1956

15 Solar Neutrinos

16 First measurement of the solar neutrinos
Inverse beta-decay (β€žneutrino-capture”) 600 tons Carbon tetrachloride Homestake Sun neutrino- Observatory ( ) 40 days neutrino irradiation … Expected: 60 atoms 37Ar

17 Super Kamiokande – Detection Concept

18 Super Kamiokande – the Detector

19 Super Kamiokande – the Detector


Download ppt "Neutral Particles."

Similar presentations


Ads by Google