Download presentation
Presentation is loading. Please wait.
1
Status of the LHCf experiment
Physics background Experiment and current results LHC 13 TeV run and future STE Lab. / Kobayashi-Maskawa Inst., Nagoya University Yoshitaka Itow ICRC2015 30th Jul 2015
2
1017 eV :Crossroad of accelerators and UHECRs
Telescope Array AUGER HEAT Air shower experiments AUGER, TA TALE GZK Ankle Knee 2nd Knee? 7 13TeV Colliders 0.5 0.9 2.76 Cosmic rays 1014 1017 1020 eV LHC covers 1014 – 1017 eV cosmic rays LHCf measures forward particle spectra relevant t air showers.
3
The LHCf experiment *,**Y.Itow, *Y.Makino, *K.Masuda, *Y.Matsubara, *E.Matsubayashi, ***H.Menjo, *Y.Muraki, *Y.Okuno, *,**T.Sako, *M.Ueno, *Q.D.Zhou *Solar-Terrestrial Environment Laboratory, Nagoya University, Japan **Kobayashi-Maskawa Institute, Nagoya University, Japan ***Graduate School of Science, Nagoya University, Japan K.Yoshida Shibaura Institute of Technology, Japan T.Iwata, K.Kasahara, T.Suzuki, S.Torii Waseda University, Japan Y.Shimizu, T.Tamura Kanagawa University, Japan N.Sakurai Tokushima University, Japan M.Haguenauer Ecole Polytechnique, France W.C.Turner LBNL, Berkeley, USA O.Adriani, E.Berti, L.Bonechi, M.Bongi, G.Castellini, R.D’Alessandro, M.Delprete, M.Grandi, G.Mitsuka, P.Papini, S.Ricciarini, A.Tiberio INFN, Univ. di Firenze, Italy A.Tricomi INFN, Univ. di Catania, Italy J.Velasco, A.Faus IFIC, Centro Mixto CSIC-UVEG, Spain A-L.Perrot CERN, Switzerland
4
The LHCf experimental setup
calorimeter calorimeter IP1 g Arm2 n Arm1 p0 D1 D1 Front Counter Front Counter Arm2 Arm1 44X0, 1.6 lint 16 tungsten + pl.scinti. layers 25mmx25mm+32mmx32mm 4 Silicon strip tracking layers 16 tungsten + pl.scinti. layers 20mmx20mm+40mmx40mm 4 SciFi tracking layers
5
Calorimeter performance
Gamma-rays (E>100GeV, dE/E<5%) Neutral Hadrons (E>a few 100 GeV, dE/E~40%) Neutral Pions (E>700GeV, dE/E<3%) Shower incident position (170mm / 40mm for g, Arm1/Arm2) ( 1mm for hadron showers) p0 g-like Had-like
6
Brief history of LHCf May 2004 LOI Feb 2006 TDR
Jan 2008 Installation Sep 1st LHC beam Jul 2006 construction May 2004 LOI Feb 2006 TDR June 2006 LHCC approved Aug 2007 SPS beam test Dec- Jul 2010 0.9TeV& 7TeV pp Detector removal ----- 会議メモ (2014/06/17 13:26) ----- 2004 Dec2012- Feb 2013 5TeV/n pPb, 2.76TeVpp (Arm2 only) Detector removal May-June 2015 13 TeVpp Detector removal
7
LHCf published results
7 & 0.9 TeV pp photon h>10.94 h> 10.76 PLB 703 (2011) PLB 715 (2012) Preliminary 7TeV pp neutron Submitted PLB LHCf published results 7TeV pp p0 PRD 86 (2012) 5TeVn pPb p0 PRC 89 (2014)
8
Very forward neutron at 7TeV p-p
h>10.76 : QGSJET03 good, >h>9.22 DPMJET3 good Larger neutron / gamma ratio than expected Submitted to PLB 40% E res. unfolded h> 10.76 8.99<h<9.22 Preliminary ----- 会議メモ (2014/06/17 13:26) ----- unfolded 40% Delta E eta 書き直し、大きく Enhancement => bump Data 3.05±0.19 DPMJET3.04 EPOS 1.99 PYTHIA 8.145 QGSJET II-03 SYBILL 2.1 1.05 1.80 1.27 2.34 0.88 Data 1.26±0.08 DPMJET3.04 EPOS 1.99 PYTHIA 8.145 QGSJET II-03 SYBILL 2.1 0.76 0.69 0.82 0.65 0.57 n / g ratio n / g ratio
9
LHCf Type-I and Type-II p0 analysis
1 Type-II PTp0(GeV/c) Ep0(TeV) 4 Ep0(TeV) 4
10
Pz spectra Type-I + Type-II p0
To be submitted PRD Preliminary
11
LHCf p0 yields vs collision energies
To be submitted PRD preliminary RHICf 510GeVpp planed
12
LHC 13TeV LHCf run 2015 Week24, Jun 9~13, LHCf dedicated low-lumi run
Total hrs w/ L=0.5~1.6e29 cm2s-1 ~39 M showers, 0.5 M p0 obtained Trigger exchange with ATLAS Detector removal on Jun 15th during TS1
13
First look from 13 TeV data
Preliminary
14
ATLAS-LHCf trigger exchange
Non-diffraction tagging by Ntrk>=2 in ALTAS |η|<2 (PT>100 MeV/c) Diffraction : 10 % of LHCf data Prescaled Hadron(neutron) MC by PYHITA
15
Future prospects RHICf ( LHCf detector at RHIC zero degree)
Participate Run GeV pp at the STAR site Comparison to 7&13TeV data with same pT coverage And also LHC p-Pb run, and future LHC p-Oxygen … RHICf Ep0 expected 510 GeV pp 6.36<y<6.70 h>5.8 p RHICf 18m
16
Summary The LHCf : particles spectra at very forward of LHC
h > 8.4, with nice performance for PID, EM energy and PT So far g, p0 ,n from 0.9, 2.76 and 7 TeV p-p, and p0 5TeV p-Pb Energy spectra for very forward neutron Bump at large XF, data shows more neutron yield than models New p0 analysis Add Type-II p0, complete acceptance coverage Comparison of 7 TeV and 2.76 TeV p-p LHC 13 TeV pp and Future 13 TeV run successfully done in Jun 2015, analysis on-going RHICf 510 GeV pp in 2017, LHC p-Pb, and more ----- 会議メモ (2014/06/17 13:26) ----- 変なコンマ、書きかけ? connection to low-x physics , UPC
17
Backup
18
LHCf average PT of Type-I + Type-II p0
To be submitted PRD preliminary RHICf planed
19
Rapidity vs Forward energy spectra
√s=14TeV h=7.60 h=6.91 h=5.99 h=8.40 h=8.77 450mrad 310 mrad h=8.40 h=8.77 η ----- 会議メモ (2014/06/17 13:26) ----- etaを大きな字で カラーをfractionに直した方がよかった θ [μrad] 310 Viewed from IP1 (red:Arm1, blue:Arm2) h= 8.7 8.7 h= ∞ ∞ Projected edge of beam pipe
20
Rapidity vs Forward energy spectra
h=8.40 h=8.77 h=7.60 h=6.91 h=5.99 η ∞ 8.7 θ [μrad] 310 h= 8.7 Viewed from IP1 (red:Arm1, blue:Arm2) h= ∞ Projected edge of beam pipe
21
LHCf single g spectra at 7TeV
PLB 703 (2011) None of the models agree with data Data within the range of the model spread 0.68 (0.53)nb-1 on 15May2010 h>10.94 8.81<h<8.99 DPMJET 3.04 QGSJETII-03 SIBYLL 2.1 EPOS 1.99 PYTHIA 8.145 ----- 会議メモ (2014/06/17 13:26) ----- 横軸エネルギー追加 zero degree 追加 current sys err due to models is correct
22
LHCf single g spectra at 900 GeV
PLB 715 (2012) DPMJET 3.04 QGSJETII-03 SIBYLL 2.1 EPOS 1.99 PYTHIA 8.145 8.77 <h<9.46 h>10.15 May2010, 0.3nb-1 (21% normalization uncertainty ) 6 6 5 5 MC/Data MC/Data 4 4 3 3 2 2 1 1 50 E(GeV) 450 50 E(GeV) 450
23
LHCf p0 PT spectra at 7TeV 1 PRD 86 (2012) Type-I Type-II
24
LHCf nuclear modification factor (-11.0>h > -8.9)
Very large suppression (~ 0.1) at PT ~ 100MeV region Models also show similar large suppression, but PT dependence ? <Ncoll>=6.9± 0.7 Ratio to pp 3 2 1
25
LHCf EM(p0) energy flow vs rapidity (7TeV)
Plot by N.Sakurai
26
LHCf neutron energy flow vs rapidity
Plot by N.Sakurai
27
ATLAS ND Tagged LHCf g and neutrons 13 TeV pp MC (PYTHIA)
Hadron(neutron)
28
XF scaling of very forward neutron
A. Adare, et al., Phys. Rev. D, 88, (2013) K.Kawade PhD thesis (2014) Preliminary RHIC PHENIX (200GeV), ISR ( GeV) LHCf 7TeV neutron (Arm1 only) 0<PT<0.11xF GeV/c
29
PTp0 spectra Type-I + Type-II p0
To be submitted PRD Preliminary
30
Feynman scaling in p0 production
To be submitted PRD preliminary LHCf π0 spectra at √s= 2.76 and 7 TeV (preliminary) Soon compared w/ LHC 13 TeV, and future RHICf (510GeV)
31
Detector performance Ehad resolution Eg resolution 4% 200 100 E(GeV)
200 GeV electrons 350GeV protons sx=172 mm Position resolution Number of event For hadron, Dx~2.5 mm x-pos[mm]
32
Hadronic shower (LHC MC)
PID (SPS energy) EM shower (SPS) NIM, A671 (2012) JINST, 5, P01012, 2010 Hadronic shower (LHC MC) JINST, 9, P03016 (2014) energy resolution (%) energy resolution (%) position resolution (mm) position resolution (μm)
33
Hadron shower reconstruction
Check by SPS 350GeV p beam
34
Expected Results (single photons)
6.26<η<6.49 6.87<η<7.40 7.40<η<7.83 8.27<η Photon spectra at 4 rapidity samples 12 hours statistics (12 nb-1 effective luminosity; 360nb-1 delivered) Statistical error is almost negligible except at the highest energy bins
35
Expected Results (single neutrons)
6.26<η<6.49 6.87<η<7.40 7.40<η<7.83 8.27<η Neutron spectra at 4 rapidity samples 12 hours statistics (12 nb-1 effective luminosity; 360nb-1 delivered) RHICf resolution not considered; true spectra Statistical error is almost negligible
36
Possible future p-Oxygen run
Important missing information ; nuclear shadowing Large suppression 0.1 for p-Pb for very forward p0 at low PT Less expected for p-Light Ion, but model dependent (~25%) Oxygen beam is technically feasible in LHC Current largest diff. btw 2 models p-p QGSJET II-04 p-N All s By T.Pierog p-Pb Energy flow 8.81<<8.99 >10.94 By S. Ostapchenko ----- 会議メモ (2014/06/17 13:26) ----- p-OのUHECRへの影響:Tanguyのスライドをバックアップ追加 36
Similar presentations
© 2024 SlidePlayer.com. Inc.
All rights reserved.