Presentation is loading. Please wait.

Presentation is loading. Please wait.

Parallel Techniques之 易并行计算

Similar presentations


Presentation on theme: "Parallel Techniques之 易并行计算"— Presentation transcript:

1 Parallel Techniques之 易并行计算
Lecture 4 Parallel Techniques之 易并行计算 张少强

2 Embarrassingly Parallel Computations
Parallel Techniques Embarrassingly Parallel Computations

3 Embarrassingly Parallel Computations
A computation that can obviously be divided into a number of completely independent parts, each of which can be executed by a separate process(or).计算可以很显然地被分成一组完全独立的部分,每部分可分别由一个进程执行。 进程之间没有或有很少的通信 每个进程可以不与其他进程有交互来运行任务

4 Practical embarrassingly parallel computation with static process creation and master-slave approach

5 Embarrassingly Parallel Computation
Examples • Low level image processing • Mandelbrot set • Monte Carlo Calculations

6 Low level image processing
Many low level image processing operations only involve local data with very limited if any communication between areas of interest.

7 Image coordinate system
Origin (0,0) x . (x, y) y

8 Some geometrical operations
Shifting平移 Object shifted by Dx in x-dimension and Dy in y-dimension: x¢ = x + Dx y¢ = y + Dy where x and y are original coordinates and x¢ and y¢ are the new coordinates. x y Dx Dy

9 Some geometrical operations
Scaling缩放 Object scaled by factor Sx in x-direction and Sy in y-direction: x¢ = xSx y¢ = ySy x y 3.8

10 Rotation翻转 Object rotated through an angle q about the origin of the coordinate system: x¢ = x cosq + y sinq y¢ = -x sinq + y cosq x y 3.8

11 Parallelizing Image Operations
Partitioning into regions for individual processes Example Square region for each process (can also use strips) 3.9

12 主进程master process for(i=0,row=0;i<48;i++,row=row+10)
480行,10行一组分割;分出48个从进程;每个进程处理640*10区域。 for(i=0,row=0;i<48;i++,row=row+10) Send(row,P(i)); /*send row to process i*/ for(i=0;i<480;i++) for(i=0;i<640;j++) temp_map[i][j]=0; for(i=0;i<(640*480);i++) Recv(oldrow,oldcol,newrow,newcol,P_any); if!((newrow<0)||(newrow>=480)||(newcol<0)||(newcol>=640)) temp_map[newrow][newcol]=map[oldrow][oldcol]; } for(j=0;j<640;j++) map[i][j]=temp_map[i][j];

13 从进程slave process 平移的从进程 从进程之间没有通信
Recv(row, P(0)); /*revecive from master process*/ for(oldrow=row;oldrow<(row+10);oldrow++) for(oldcol=0;oldcol<640;oldcol++){ newrow=oldrow+delta_x; newcol=oldcol+delta_y; Send(oldrow,oldcol,newrow,newcol,P(0)); } 从进程之间没有通信

14 Mandelbrot Set曼德博集合 是一种在复平面上组成分形的点的集合 Set of points in a complex plane that are quasi-stable (will increase and decrease, but not exceed some limit) when computed by iterating the function: where zk +1 is the (k + 1)th iteration of complex number: z = a + bi and c is a complex number giving position of point in the complex plane. The initial value for z is zero.

15 Mandelbrot Set continued
Zk 或者延伸到无限大,或者只停留在有限半径的圆盘内。 曼德博集合就是使以上序列不延伸至无限大的所有c点的集合。 Iterations continued until magnitude of z is: Greater than 2 or Number of iterations reaches arbitrary limit. Magnitude of z is the length of the vector given by:

16 对一点(像素)的值进行计算并返回迭代次数(色)
structure complex { float real; float imag; }; int cal_pixel(complex c) { int count, max; complex z; float temp, lengthsq; max = 256; /*若令256为黑色*/ z.real = 0; z.imag = 0; count = 0; /* number of iterations */ do { temp = z.real * z.real - z.imag * z.imag + c.real; z.imag = 2 * z.real * z.imag + c.imag; z.real = temp; lengthsq = z.real * z.real + z.imag * z.imag; count++; } while ((lengthsq < 4.0) && (count < max)); return count; }

17 Mandelbrot set

18 Static Task Assignment
Parallelizing Mandelbrot Set Computation Static Task Assignment Simply divide the region in to fixed number of parts, each computed by a separate processor. Not very successful because different regions require different numbers of iterations and time.

19 Dynamic Task Assignment
Have processor request regions after computing previous regions

20 动态主进程 Count=0; Row=0; For(k=0;k<num_proc;k++) /*进程数<row/
send(&row,Pk,data_tag); count++; row++; } do{ recv(&slave,&r,color,P_any,result_tag); count--; if(row <disp_height){ send(&row,P_slave,data_tag); }else send(&row, P_slave,terminator_tag); display(); }while(count>0)

21 Monte Carlo Methods Another embarrassingly parallel computation.
Monte Carlo methods use of random selections.

22 2 x 2的正方形内接一个圆. 圆与正方形的面具比值为:
在正方形内随机选择很多“点”. 记下有多少个“点”落在圆中。 Fraction of points within circle will be , given sufficient number of randomly selected samples.

23

24 Computing an Integral One quadrant can be described by integral
Random pairs of numbers, (xr,yr) generated, each between 0 and 1. Counted as in circle if

25 Alternative (better) Method
Use random values of x to compute f(x) and sum values of f(x): where xr are randomly generated values of x between x1 and x2. Monte Carlo method very useful if the function cannot be integrated numerically (maybe having a large number of variables)

26 Example Computing the integral Sequential Code sum = 0;
for (i = 0; i < N; i++) { /* N random samples */ xr = rand_v(x1, x2); /* generate next random value */ sum = sum + xr * xr - 3 * xr; /* compute f(xr) */ } area = (sum / N) * (x2 - x1); Routine randv(x1, x2) returns a pseudorandom number between x1 and x2.

27 For parallelizing Monte Carlo code, must address best way to generate random numbers in parallel

28 /*********************************************************************************
pi_calc.cpp calculates value of pi and compares with actual value (to 25digits) of pi to give error. Integrates function f(x)=4/(1+x^2). **********************************************************************************/ #include <math.h> //include files #include <iostream.h> #include "mpi.h " void printit(); //function prototypes int main(int argc, char *argv[]) { double actual_pi = ; //for comparison later int n, rank, num_proc, i; double temp_pi, calc_pi, int_size, part_sum, x; char response = 'y', resp1 = 'y'; MPI::Init(argc, argv); //initiate MPI

29 num_proc = MPI::COMM_WORLD.Get_size();
rank = MPI::COMM_WORLD.Get_rank(); if (rank == 0) printit(); /* I am root node, print out welcome */ while (response == 'y') { if (resp1 == 'y') { if (rank == 0) { /*I am root node*/ cout <<"__________________________________" <<endl; cout <<"\nEnter the number of intervals: (0 will exit)" << endl; cin >> n;} } else n = 0; MPI::COMM_WORLD.Bcast(&n, 1, MPI::INT, 0); //broadcast n if (n==0) break; //check for quit condition

30 else { int_size = 1.0 / (double) n; //calcs interval size part_sum = 0.0; for (i = rank + 1; i <= n; i += num_proc) { //calcs partial sums x = int_size * ((double)i - 0.5); part_sum += (4.0 / (1.0 + x*x)); } temp_pi = int_size * part_sum; //collects all partial sums computes pi MPI::COMM_WORLD.Reduce(&temp_pi,&calc_pi, 1, MPI::DOUBLE, MPI::SUM, 0);

31 if (rank == 0) { /*I am server*/
cout << "pi is approximately " << calc_pi << ". Error is " << fabs(calc_pi - actual_pi) << endl <<"_______________________________________" << endl; } } //end else if (rank == 0) { /*I am root node*/ cout << "\nCompute with new intervals? (y/n)" << endl; cin >> resp1; }//end while MPI::Finalize(); //terminate MPI return 0; } //end main

32 //functions void printit() { cout << "\n*********************************" << endl << "Welcome to the pi calculator!" << endl << "You set the number of divisions \nfor estimating the integral: \n\tf(x)=4/(1+x^2)" << endl << "*********************************" << endl; } //end printit

33


Download ppt "Parallel Techniques之 易并行计算"

Similar presentations


Ads by Google