Download presentation
Presentation is loading. Please wait.
1
Lecture Angular Momentum
Tidal-Torque Theory Halo spin Angular-momentum distribution within halos Gas Condensation and Disk Formation The AM Problem(s) Thin disk, thick disk, bulge
3
Disk Size Spin parameter Conservation of specific angular momentum J/M
4
Tidal-Torque Theory (TTT)
Peebles White 1984
5
N-body simulation of Halo Formation
6
N-body simulation of Halo Formation
7
Origin of Angular Momentum
Tidal Torque Theory (TTT): Peebles White 1984 proto-galaxy perturber Tidal: Inertia: Result:
8
Tidal-Torque Theory Proto-halo: a Lagrangian patch Γ Γ Halo
9
Tidal-Torque Theory angular momentum in Eulerian patch
comoving coordinates const. in m.d. displacement from Lagrangian q to Eulerian x laminar flow average over q in Γ Zel’dovich approximation in a flat universe in EdS 2nd-order Taylor expansion of potential about qcm=0 Deformation tensor Inertia tensor antisymmetric tensor
10
Tidal-Torque Theory Deformation tensor Inertia tensor antisymmetric Tidal tensor = Shear tensor Only the trace-less part contributes Quadrupolar Inertia L by gravitational coupling of Quadrupole moment of Γ with Tidal field from neighboring fluctuations →T and I must be misaligned. L∝t till ~turnaround perturber
11
TTT vs Simulations (Porciani, Dekel & Hoffman 2002)
Alignment of T and I: Spin originates from the residual misalignment. → Small spin !
12
TTT vs. Simulations: Amplitude Growth Rate Porciani, Dekel & Hoffman 02
Direction
13
TTT vs Simulations: Scatter (Porciani, Dekel & Hoffman 2002)
14
TTT predicts the spin amplitude to within a factor of ~2,
but it is not a very reliable predictor of spin direction.
15
Alignment of I and T: Protohalos and Filaments
16
Alignment of I and T: Protohalos and Filaments
17
Stages in Halo Formation
18
Spin axis and Large-Scale Structure
TTT: The spin direction is correlated with the intermediate principal axis of the Iij tensor at turnaround. In a large-scale pancake: the spin axis should tend to lie in the plane.
19
Disk-Pancake Alignment in the Local Supercluster
20
Halo Spin Parameter Fall & Efstathiou 1980 Barnes & Efstathiou 1984
Steinmetz et al … Bullock et al. 2001b
21
λ is constant, independent of a or M
Halo Spin Parameter Peebles 76: dimensionless Bullock et al. 2001 same for isothermal sphere TTT: J determined at turnaround λ is constant, independent of a or M simulations: λ~0.05
22
Distribution of Halo Spins
<λ> ~ 0.04 Δlnλ ~ 0.5
23
Spin vs Mass, Concentration, History
λ distribution is universal λ correlated with ac, anti-correlated with C
24
Spin Jump in a Major Merger
Burkert & D’onghia 04 λ quiet halos with no recent major merger J time
25
J Distribution inside Halos
Bullock et al. 2001b
26
Universal Distribution of J inside Halos
Bullock et al. 2001b Two parameter family: spin parameter λ and shape parameter μ P(μ) μ-1 λ μ-1
27
Distribution of J with radius: a power-law profile
j(r)~Ms s j(r) /jmax s=1.3±0.3 M(<r) /Mv Mvir
28
Distribution of J in space
Toy model: J by minor mergers r Tidal radius Assume m and j are deposited locally in a shell r M(<r) /Mv j(r) /jmax NFW halo s=1.3±0.3 j(r) /jmax M(<r) /Mv
29
Formation of Stellar Disks and Spheroids inside DM Halos
White & Rees 1978 Fall & Efstathiou 1980 Mo, Mao & White
31
Galaxy Types: Disks and Spheroids
The morphology of a galaxy is a transient feature dictated by the mass accretion history of its dark matter halo most stars form in disks; spheroids result from subsequent mergers disks result from smooth gas accretion; oldest disk stars are often used to date the last major merger event
32
Galaxy Formation in halos
radiative cooling cold hot cold gas young stars merger hhalos accretion disk spheroid old stars
33
Gas versus Dark Matter Navarro, Steinmetz
34
Flat gaseous disk vs spheroidal DM halo
35
Disk/Bulge Formation (gas only) (Navarro, Steinmetz)
36
Disk Formation MW size (SPH, Governato)
37
Disk Formation – quiet history
38
Disk Formation - mergers
39
Disk Size Spin parameter Conservation of specific angular momentum J/M
40
Disk Profile from the Halo J Distribution
Assume the gas follows the halo j distribution Assume conservation of j during infall from halo to disk. In disk: lower j at lower r In disk: Assume isothermal sphere No adiabatic contraction
41
Disk Profile: Shape Problem
Bullock et al. 2001b r/Rvir Σd(r) [Md/Rv2] Σd(r) [Md/Rv2] r/Rvir
42
The Angular-Momentum Problem
Navarro & Steinmetz
43
Navarro & Steinmetz et al.
The Spin Catastrophe Navarro & Steinmetz et al. observations simulations j j
44
The spin catastrophe observed Simulated SPH Steinmetz, Navarro, et al.
45
Observed j distribution in dwarfs
BBS halo disk Observed j distribution in dwarfs Low fbaryons0.03 Missing low j High baryons0.07 P(j/jtot ) j/jtot van den Bosch, Burkert & Swaters 2002
46
Over-cooling spin catastrophe
Maller & Dekel 02 tidal stripping + DM halo gas cooling satellite dynamical friction Feedback can save the day
47
Orbital-merger model:
Add orbital angular momentum in merger history Merger history t Binney & Tremaine Orbit parameters and random orientation
48
Succes of orbital-merger model
simulations Maller, Dekel & Somerville 2002
49
Model success: j distribution in halos
simulations
50
Low/high-j from minor/major mergers
model simulations High-j from major mergers J Low-j from minor mergers
51
Feedback in satellite halos
hot gas jb<jDM DM blow out jb>jDM hot gas jb=jDM
52
Model vs Data (Maller & Dekel 02)
BBS data: 14 dwarfs, van den Bosch, Burkert & Swaters 02 baryon fraction spin parameter model dwarfs bright BBS data BBS data model dwarfs Vvir=60 One free parameter in model: Vfeedback 90 km s-1
53
J-distribution within galaxies
data model DM halo disk BBS: van den Bosch, Burkert & Swaters 2002
54
Summary: feedback effect on spin
In big satellites (merging to big galaxies) heating gas expansion Rb~RDM tidal stripping together bar~ DM In small satellites (merging to dwarfs) gas blowout fbar down blowout of low j gas bar > DM
55
Thin Disk and Thick Disk
Navarro & Steinmetz
56
Dynamical Components of a Simulated galaxy
57
Dynamical components of a simulated galaxy
non-rotating spheroid thick disk thin disk Orbital Circularity Abadi et al 03
Similar presentations
© 2024 SlidePlayer.com. Inc.
All rights reserved.