Presentation is loading. Please wait.

Presentation is loading. Please wait.

Tutorial 3: Using XLMiner for Association Rule Mining

Similar presentations


Presentation on theme: "Tutorial 3: Using XLMiner for Association Rule Mining"— Presentation transcript:

1 Tutorial 3: Using XLMiner for Association Rule Mining
COMP 1942 Tutorial 3: Using XLMiner for Association Rule Mining TA: Harry Chan COMP1942

2 Outline Review Data Source Mine Association Rule with XLMiner
Binary matrix Item list COMP1942

3 Review Transaction Itemset Support (of an itemset {a, b, c})
A set of items, e.g. a, b, c, d Itemset A set of items, e.g. {a, b}, {a, b, c} Support (of an itemset {a, b, c}) Number of transactions that contain the itemset {a, b, c} COMP1942

4 Review (cont.) Association rule Confidence Lift ratio
Antecedent -> Consequent, e.g., {a, b} -> c Confidence support (of the {antecedent, consequent}) / support of {antecedent} E.g., support (of {a, b, c}) / support (of {a, b}) Lift ratio Confidence / Expected confidence COMP1942

5 Summary (Lift=Conf./Expected Conf.) Support Confidence Lift ratio
Confidence, # of rules  Support , # of rules  # of rules COMP1942

6 Outline Review Data Source Mine Association Rule with XLMiner
Binary matrix Item list COMP1942

7 Data source Dataset is a set of transactions Two formats
A transaction is a set of items Two formats Binary matrix Item list COMP1942

8 Data source formats Binary matrix Item list Transaction: {A, D}
COMP1942

9 Outline Review Data Source Mine Association Rule with XLMiner
Binary matrix Item list COMP1942

10 Mine Association Rule in XLMiner
Two ways to access association rule “Add-ins” Tag  XLMiner  Affinity  Association Rules “XLMiner Platform” Tag  Associate  Association Rules COMP1942

11 Steps Step 1: Specify the data range. Step 2: Specify the data format.
Step 3: Specify the parameters. Step 4: Analyze the mining results. COMP1942

12 Binary matrix Example Data source: rule.xls. Data range: $B$1:$F$6.
Data format: Binary matrix. Parameters: Minimum Support = 3 Minimum Confidence = 50% COMP1942

13 Binary matrix Example: Steps 1-3
Data range Parameters Data format COMP1942

14 Binary matrix Example: Step 4
Rule 1:D  A COMP1942

15 Item list Example Data source: Shopping-Items.xls.
Data range: $A$3:$G$1003. Data format: Item list. Parameters: Minimum Support = 200 Minimum Confidence = 80% COMP1942

16 Item list Example: Steps 1-3
Data range Parameters Data format COMP1942

17 Item list Example: Step 4
Rule 1: { heineken, soda } cracker COMP1942

18 Exercise Data source: Shopping-Items.xls. Data range: $A$3:$G$1003.
Data format: Item list. Parameters: Minimum Support = 150 Minimum Confidence = 90% COMP1942


Download ppt "Tutorial 3: Using XLMiner for Association Rule Mining"

Similar presentations


Ads by Google