Presentation is loading. Please wait.

Presentation is loading. Please wait.

Jfrost@tiffin.kingston.sch.uk www.drfrostmaths.com @DrFrostMaths P2 Chapter 5 :: Radians jfrost@tiffin.kingston.sch.uk www.drfrostmaths.com @DrFrostMaths.

Similar presentations


Presentation on theme: "Jfrost@tiffin.kingston.sch.uk www.drfrostmaths.com @DrFrostMaths P2 Chapter 5 :: Radians jfrost@tiffin.kingston.sch.uk www.drfrostmaths.com @DrFrostMaths."β€” Presentation transcript:

1 jfrost@tiffin.kingston.sch.uk www.drfrostmaths.com @DrFrostMaths
P2 Chapter 5 :: Radians Last modified: 8th November 2017

2 Use of DrFrostMaths for practice
Register for free at: Practise questions by chapter, including past paper Edexcel questions and extension questions (e.g. MAT). Teachers: you can create student accounts (or students can register themselves).

3 Chapter Overview The concept of radians will likely be completely new to you. 2:: Find arc length and sector area (when using radians) 1:: Converting between degrees and radians. β€œπ‘‚π΄π΅ is a sector. Determine the perimeter of the shape.” β€œWhat is 45Β° in radians?” 𝐴 3 1.3 𝐢 𝐡 4 𝑂 3:: Solve trig equations in radians. 4:: Small angle approximations β€œSolve sin π‘₯ = 1 2 for 0≀π‘₯<πœ‹.” β€œShow that, when πœƒ is small, sin 5πœƒ + tan 2πœƒ βˆ’π‘π‘œπ‘ 2πœƒβ‰ˆ2 πœƒ 2 +7πœƒβˆ’1.” *NEW* to A Level 2017!

4 Radians ? So far you’ve used degrees as the unit to measure angles.
But outside geometry, mathematicians pretty much always use radians. 1 rad r Unit Note: While the unit β€œΒ°β€ must be written for degrees, no unit is generally written for radians (but if so, use β€œrad”). r 1Β° A degree is a 360th of a rotation around a full circle. This is a somewhat arbitrary definition! One radian however is the movement of one radius’ worth around the circumference of the circle. Click to Start Degree Fro-manimation Click to Start Radian Fro-manimation ? Thinking about how many radii around the circumference we can go: πŸ‘πŸ”πŸŽΒ°=πŸπ… rad

5 …but WHY use radians as our unit?
In later chapters we will see that sin π‘₯ differentiates to cos π‘₯ for example, but ONLY if π‘₯ is in radians (and we will prove why). Since trigonometric functions are commonly used in calculus (differentiation and integration) and that calculus underpins so many branches of maths, it explains why radians is seen as the β€˜default’ unit for angles. 𝑑 𝑑π‘₯ sin π‘₯ = cos π‘₯

6 180Β° = πœ‹ Converting between radians and degrees ? ? ? ? ? ? ? ? ? ?
180Β° = πœ‹ Γ·πœ‹ and Γ—180 ? 135Β°= πŸ‘ πŸ’ 𝝅 3 2 πœ‹=πŸπŸ•πŸŽΒ° 72Β°= 𝟐 πŸ“ 𝝅 5πœ‹ 6 =πŸπŸ“πŸŽΒ° ? ? 90Β°= 𝝅 𝟐 πœ‹ 3 =πŸ”πŸŽΒ° 45Β°= 𝝅 πŸ’ πœ‹ 6 =πŸ‘πŸŽΒ° ? ? ? ? ? ?

7 Be able to convert common angles in your head…
? ? 30Β°= 𝝅 πŸ” 135Β°= πŸ‘π… πŸ’ 90Β°= 𝝅 𝟐 45Β°= 𝝅 πŸ’ 60Β°= 𝝅 πŸ‘ 270Β°= πŸ‘π… 𝟐 120Β°= πŸπ… πŸ‘ ? ? ? ? ?

8 Graph Sketching with Radians
We can replace the values 90Β°, 180Β°, 270Β°, 360Β° on the π‘₯-axis with their equivalent value in radians. 𝑦 𝑦 𝑦=cos π‘₯ 1 1 𝑦=sin π‘₯ π‘₯ π‘₯ πœ‹ 2 πœ‹ 3 2 πœ‹ 2πœ‹ πœ‹ 2 πœ‹ 3 2 πœ‹ 2πœ‹ βˆ’1 βˆ’1

9 Test Your Understanding
Sketch the graph of 𝑦= cos π‘₯+ πœ‹ 2 for 0≀π‘₯<2πœ‹. ? 𝑦 𝑦=cos π‘₯+ πœ‹ 2 1 𝑦=cos π‘₯ π‘₯ πœ‹ 2 πœ‹ 3 2 πœ‹ 2πœ‹ βˆ’1

10 sin, cos, tan of angles in radians
Reminder of laws from Year 1: sin π‘₯ = sin 180βˆ’π‘₯ cos π‘₯ = cos 360βˆ’π‘₯ 𝑠𝑖𝑛,π‘π‘œπ‘  repeat every 360Β° but π‘‘π‘Žπ‘› every 180Β° sin π‘₯ = sin πœ‹βˆ’π‘₯ cos π‘₯ = cos 2πœ‹βˆ’π‘₯ 𝑠𝑖𝑛,π‘π‘œπ‘  repeat every 2πœ‹ but π‘‘π‘Žπ‘› every πœ‹ To find sin/cos/tan of a β€˜common’ angle in radians without using a calculator, it is easiest to just convert to degrees first. ? 1 2 cos 4πœ‹ 3 = 𝐜𝐨𝐬 πŸπŸ’πŸŽΒ° = 𝐜𝐨𝐬 𝟏𝟐𝟎° =βˆ’ 𝐜𝐨𝐬 πŸ”πŸŽΒ° =βˆ’ 𝟏 𝟐 120 π‘₯ 60 90 180 ? sin βˆ’ 7πœ‹ 6 = 𝐬𝐒𝐧 βˆ’πŸπŸπŸŽΒ° = 𝐬𝐒𝐧 πŸπŸ“πŸŽΒ° = 𝐬𝐒𝐧 πŸ‘πŸŽΒ° = 𝟏 𝟐 β€œUse of Technology” Monkey says: To find cos 4πœ‹ 3 directly using your calculator, you need to switch to radians mode. Press π‘†π»πΌπΉπ‘‡β†’π‘†πΈπ‘‡π‘ˆπ‘ƒ, then 𝐴𝑁𝐺𝐿𝐸 π‘ˆπ‘πΌπ‘‡, then π‘…π‘Žπ‘‘π‘–π‘Žπ‘›π‘ . An 𝑅 will appear at the top of your screen, instead of 𝐷.

11 Exercises 5A/5B Pearson Pure Mathematics Year 2/AS Pages 116, 118

12 Arc length 𝑙=π‘Ÿπœƒ 𝑙= πœƒ 360 Γ—2πœ‹π‘Ÿ ? ? 𝑙 π‘Ÿ πœƒ Arc length in degrees:
Arc length in radians From before, we know that 1 radian gives an arc of 1 radius in length, so πœƒ radians must give a length of… ? 𝑙= πœƒ 360 Γ—2πœ‹π‘Ÿ ? 𝑙=π‘Ÿπœƒ

13 Examples ? ? 0.8Γ—5.2=4.16 π‘π‘š πœƒΓ—7=2.45 πœƒ= 2.45 7 =0.35 π‘Ÿπ‘Žπ‘‘
[Textbook] Find the length of the arc of a circle of radius 5.2 cm, given that the arc subtends an angle of 0.8 radians at the centre of the circle. [Textbook] An arc 𝐴𝐡 of a circle with radius 7 cm and centre 𝑂 has a length of 2.45 cm. Find the angle βˆ π΄π‘‚π΅ subtended by the arc at the centre of the circle ? ? 𝐴 5.2 π‘π‘š 7 π‘π‘š 2.45 π‘π‘š 0.8 𝑂 πœƒ 𝐡 0.8Γ—5.2=4.16 π‘π‘š πœƒΓ—7=2.45 πœƒ= =0.35 π‘Ÿπ‘Žπ‘‘ Fro Note: Whether your calculator is in degrees mode or radians mode is only relevant when using sin/cos/tan – it won’t affect simple multiplication! Terminology: β€˜Subtend’ means opposite or extending beneath.

14 Further Examples ? ? 𝑃=2π‘Ÿ+πœƒπ‘Ÿ 𝑃=π‘Ÿ 2+πœƒ π‘Ÿ= 𝑃 2+πœƒ
[Textbook] An arc 𝐴𝐡 of a circle, with centre 𝑂 and radius π‘Ÿ cm, subtends an angle of πœƒ radians at 𝑂. The perimeter of the sector 𝐴𝑂𝐡 is 𝑃 cm. Express π‘Ÿ in terms of 𝑃 and πœƒ. [Textbook] The border of a garden pond consists of a straight edge 𝐴𝐡 of length 2.4m, and a curved part 𝐢, as shown in the diagram. The curve part is an arc of a circle, centre 𝑂 and radius 2m. Find the length of 𝐢. ? 𝐴 π‘Ÿ π‘π‘š 𝐢 𝑂 πœƒ π‘Ÿ π‘π‘š 𝐡 πœƒ 2 π‘π‘š 2 π‘π‘š 𝑃=2π‘Ÿ+πœƒπ‘Ÿ 𝑃=π‘Ÿ 2+πœƒ π‘Ÿ= 𝑃 2+πœƒ 𝐴 2.4 π‘π‘š 𝐡 ? 2 π‘π‘š Fro Tip: Trigonometry on right-angled triangles is always simpler than using sine/cosine rule. π‘₯ 1.2 π‘π‘š π‘₯= sin βˆ’ =0.6435β€¦π‘Ÿπ‘Žπ‘‘ πœƒ=2πœ‹βˆ’2π‘₯=4.9961β€¦π‘Ÿπ‘Žπ‘‘ ∴𝐢=2Γ—4.9961=9.99 π‘š (3𝑠𝑓) Angles round a point add to 2πœ‹.

15 Test Your Understanding
Figure 1 shows the triangle 𝐴𝐡𝐢, with 𝐴𝐡=8 π‘π‘š, 𝐴𝐢=11 π‘π‘š and ∠𝐡𝐴𝐢=0.7 radians. The arc 𝐡𝐷, where 𝐷 lies on 𝐴𝐢, is an arc of a circle with centre 𝐴 and radius 8 cm. The region 𝑅, shown shaded in Figure 1, is bounded by the straight lines 𝐡𝐢 and 𝐢𝐷 and the arc 𝐡𝐷. Find (a) The length of the arc 𝐡𝐷. (b) The perimeter of 𝑅, giving your answer to 3 significant figures. Edexcel C2 Jan 2005 Q7 a ? Length of arc 𝐡𝐷=0.7Γ—8=5.6 π‘π‘š b ? Perimeter =𝐡𝐷+𝐢𝐷+𝐡𝐢 𝐢𝐷=11βˆ’8=3 𝐡𝐢= βˆ’2Γ—8Γ—11Γ— cos =7.09 π‘π‘š βˆ΄π‘ƒ= =15.7 π‘π‘š (π‘‘π‘œ 3𝑠𝑓)

16 Exercises 5C Pearson Pure Mathematics Year 2/AS Pages 120-122
Note: Q10 is based on a past paper question so is worth doing.

17 Sector Area 𝐴= πœƒ 360 Γ—πœ‹ π‘Ÿ 2 𝐴= 1 2 π‘Ÿ 2 πœƒ ? ? π‘Ÿ πœƒ Area using Radians
Area using Degrees ? ? 𝐴= πœƒ 360 Γ—πœ‹ π‘Ÿ 2 𝐴= 1 2 π‘Ÿ 2 πœƒ

18 Segment Area A segment is the region bound between a chord and the circumference. This is just a sector with a triangle cut out. π‘Ÿ πœƒ π‘Ÿ Area using radians: Recall that the area of a triangle is 1 2 π‘Žπ‘ sin 𝐢 where 𝐢 is the β€˜included angle’ (i.e. between π‘Ž and 𝑏) ?

19 Examples ? ? Arc 𝐴𝐡=176βˆ’55βˆ’55=66 π‘š 66=5πœƒ βˆ΄πœƒ=1.2 π‘Ÿπ‘Žπ‘‘
[Textbook] In the diagram, the area of the minor sector 𝐴𝑂𝐡 is 28.9 cm2. Given that βˆ π΄π‘‚π΅=0.8 radians, calculate the value of π‘Ÿ. [Textbook] A plot of land is in the shape of a sector of a circle of radius 55 m. The length of fencing that is erected along the edge of the plot to enclose the land is 176 m. Calculate the area of the plot of land. 𝐴 𝐴 55 π‘š π‘Ÿ cm 0.8 𝑂 πœƒ π‘Ÿ cm 55 π‘š 𝐡 𝐡 ? ? Arc 𝐴𝐡=176βˆ’55βˆ’55=66 π‘š 66=5πœƒ βˆ΄πœƒ=1.2 π‘Ÿπ‘Žπ‘‘ Area = 1 2 Γ— 55 2 Γ—1.2=1815 m2 28.9= 1 2 π‘Ÿ 2 Γ— =0.4 π‘Ÿ 2 π‘Ÿ 2 = =72.25 π‘Ÿ= =8.5

20 Segment Examples [Textbook] In the diagram above, 𝑂𝐴𝐡 is a sector of a circle, radius 4m. The chord 𝐴𝐡 is 5m long. Find the area of the shaded segment. [Textbook] In the diagram, 𝐴𝐡 is the diameter of a circle of radius π‘Ÿcm, and βˆ π΅π‘‚πΆ=πœƒ radians. Given that the area of Δ𝐴𝑂𝐢 is three times that of the shaded segment, show that 3πœƒβˆ’4 sin πœƒ =0. 𝐴 4 π‘š 𝐢 5π‘š 𝑂 πœƒ 4 π‘š πœƒ 𝐴 𝐡 𝐡 π‘Ÿ 𝑂 π‘Ÿ ? ? Using cosine rule: 5 2 = βˆ’ 2Γ—4Γ—4Γ— cos πœƒ 25=32βˆ’32 cos πœƒ 32 cos πœƒ =32βˆ’25=7 πœƒ= cos βˆ’ =1.3502… Area of shaded segment: 1 2 Γ— β€¦βˆ’ sin … =3.00 m2. Area of segment = 1 2 π‘Ÿ 2 πœƒβˆ’ sin πœƒ Area of Δ𝐴𝑂𝐢= 1 2 π‘Ÿ 2 sin πœ‹βˆ’πœƒ = 1 2 π‘Ÿ 2 π‘ π‘–π‘›πœƒ ∴ 1 2 π‘Ÿ 2 sin πœƒ =3Γ— 1 2 π‘Ÿ 2 πœƒβˆ’ sin πœƒ sin πœƒ =3 πœƒβˆ’ sin πœƒ ∴3πœƒβˆ’4 sin πœƒ =0 Recall that sin πœƒ = sin πœ‹βˆ’πœƒ

21 Test Your Understanding
Edexcel C2 1 2 Γ— 9 2 Γ—0.7=28.35 ? tan = 𝐴𝐢 9 ∴𝐴𝐢=9 tan =7.58 ? ? π΄π‘Ÿπ‘’π‘Ž 𝑂𝐴𝐢= 1 2 Γ—9Γ—7.58=34.11 𝐻=34.11βˆ’28.35=5.76

22 Exercises 5D ? Pearson Pure Mathematics Year 2/AS Pages 125-128
Extension [MAT J] If two chords 𝑄𝑃 and 𝑅𝑃 on a circle of radius 1 meet in an angle πœƒ at 𝑃, for example as drawn in the diagram on the left, then find the largest possible area of the shaded region 𝑅𝑃𝑄, giving your answer in terms of πœƒ. ? For a fixed πœƒ the largest area is obtained when the angle bisector of 𝑃𝑄 and 𝑃𝑅 is the diameter of the circle. This can be broken up into two isosceles triangles and a sector as shown. βˆ π΅π‘‚πΆ=2πœƒ as angle at centre is twice angle at circumference. βˆ π΄π‘‚π΅=πœ‹βˆ’ πœƒ 2 βˆ’ πœƒ 2 =πœ‹βˆ’πœƒ Area of 𝐴𝑂𝐡= 1 2 Γ— 1 2 Γ— sin πœ‹βˆ’πœƒ = 1 2 sin πœƒ Area of sector 𝐡𝑂𝐢= 1 2 Γ— 1 2 Γ—2πœƒ=πœƒ. Total shaded area =2Γ— 1 2 sin πœƒ +πœƒ=πœƒ+ sin πœƒ . 𝐡 1 πœƒ 2 πœ‹βˆ’πœƒ 𝐴 1 2πœƒ πœƒ 2 𝑂 1 𝐢

23 Solving Trigonometric Equations
Solving trigonometric equations is virtually the same as you did in Year 1, except: Your calculator needs to be in radians mode. We use πœ‹βˆ’ instead of 180Β°βˆ’, and so on. sin π‘₯ = sin πœ‹βˆ’π‘₯ cos π‘₯ = cos 2πœ‹βˆ’π‘₯ 𝑠𝑖𝑛,π‘π‘œπ‘  repeat every 2πœ‹ but π‘‘π‘Žπ‘› every πœ‹ 0≀3πœƒβ‰€6πœ‹ 3πœƒ= πœ‹ 3 , 2πœ‹ 3 , 7πœ‹ 3 , 8πœ‹ 3 , 13πœ‹ 3 , 14πœ‹ 3 βˆ΄πœƒ= πœ‹ 9 , 2πœ‹ 9 , 7πœ‹ 9 , 8πœ‹ 9 , 13πœ‹ 9 , 14πœ‹ 9 ? Adjust interval. [Textbook] Solve the equation sin 3πœƒ = in the interval 0β‰€πœƒβ‰€2πœ‹. Use πœ‹βˆ’ to get second value in each β€˜pair’. Then go to next cycle by adding 2πœ‹ to each value in pair. Only Γ·3 once all values obtained in range. [Jan 07 Q6] Find all the solutions, in the interval 0 ≀ x < 2, of the equation 2 cos2 x + 1 = 5 sin x, giving each solution in terms of . (6) ? 2 1βˆ’ sin 2 π‘₯ +1=5 sin π‘₯ 2βˆ’2 sin 2 π‘₯ +1=5 sin π‘₯ 2 sin 2 π‘₯ +5 sin π‘₯ βˆ’3=0 2 sin π‘₯ βˆ’1 sin π‘₯ +3 =0 sin π‘₯ = π‘œπ‘Ÿ sin π‘₯ =βˆ’3 π‘₯= πœ‹ 6 π‘œπ‘Ÿ π‘₯=πœ‹βˆ’ πœ‹ 6 = 5πœ‹ 6

24 Exercises 5E ? Pearson Pure Mathematics Year 2/AS Pages 131-132
Extension [MAT C] In the range 0≀π‘₯≀2πœ‹, the equation sin 2 π‘₯ +3 sin π‘₯ cos π‘₯ +2 cos 2 π‘₯ =0 has how many solutions? ? 𝐬𝐒𝐧 𝒙 +𝟐 𝐜𝐨𝐬 𝒙 𝐬𝐒𝐧 𝒙 + 𝐜𝐨𝐬 𝒙 =𝟎 𝐬𝐒𝐧 𝒙=βˆ’πŸ 𝐜𝐨𝐬 𝒙 or 𝐬𝐒𝐧 𝒙 =βˆ’ 𝐜𝐨𝐬 𝒙 𝐭𝐚𝐧 𝒙 =βˆ’πŸ or 𝐭𝐚𝐧 𝒙 =βˆ’πŸ The tan graph always has 1 solution per each cycle of 𝝅 radians, so 4 solutions.

25 Small Angle Approximations
𝑦=π‘₯ 𝑦=π‘₯ 𝑦= sin π‘₯ 𝑦= sin π‘₯ If π‘₯ is in radians, we can see from the graph that as π‘₯ approaches 0, the two graphs are approximately the same, i.e. sin π‘₯ β‰ˆπ‘₯ If π‘₯ was in degrees however, then we can see this is not the case. ! When πœƒ is small and measured in radians: sin πœƒ β‰ˆπœƒ tan πœƒ β‰ˆπœƒ cos πœƒ β‰ˆ1βˆ’ πœƒ 2 2

26 Small Angle Approximations
Geometric Proof that π’”π’Šπ’ πœ½β‰ˆπœ½: 𝐴 The area of sector 𝑂𝐴𝐡 is: 𝟏 𝟐 Γ— 𝟏 𝟐 Γ—πœ½= 𝟏 𝟐 𝜽 The area of triangle 𝑂𝐴𝐡 is: 𝟏 𝟐 Γ— 𝟏 𝟐 Γ—π’”π’Šπ’πœ½= 𝟏 𝟐 𝐬𝐒𝐧 𝜽 1 πœƒ 𝑂 1 𝐡 As πœƒ becomes small, the area of the triangle is approximately equal to that of the sector, so: 1 2 sin πœƒ β‰ˆ 1 2 πœƒ sin πœƒ β‰ˆπœƒ 𝐴 1 𝑂 πœƒ 1 𝐡 Note that this only works for radians, because we used the sector area formula for radians. The fact that sin πœƒ β‰ˆπœƒ is enormously important when we come to differentiation, because we can use it to prove that 𝑑 𝑑π‘₯ sin π‘₯ = cos π‘₯ .

27 Examples When πœƒ is small and measured in radians: sin πœƒ β‰ˆπœƒ tan πœƒ β‰ˆπœƒ cos πœƒ β‰ˆ1βˆ’ πœƒ 2 2 [Textbook] When πœƒ is small, find the approximate value of: sin 2πœƒ + tan πœƒ 2πœƒ cos 4πœƒ βˆ’1 πœƒ sin 2πœƒ [Textbook] a) Show that, when πœƒ is small, sin 5πœƒ + tan 2πœƒ βˆ’ cos 2πœƒ β‰ˆ2 πœƒ 2 +7πœƒβˆ’1 b) Hence state the approximate value of sin 5πœƒ + tan 2πœƒ βˆ’ cos 2πœƒ for small values of πœƒ. ? π’”π’Šπ’ πŸ“πœ½ + 𝒕𝒂𝒏 𝟐𝜽 βˆ’ 𝒄𝒐𝒔 𝟐𝜽 β‰ˆπŸ“πœ½+πŸπœ½βˆ’ πŸβˆ’ (𝟐 𝜽) 𝟐 𝟐 =πŸ•πœ½βˆ’πŸ+𝟐 𝜽 𝟐 b) The πŸ•πœ½ and 𝟐 𝜽 𝟐 terms tend towards 0, thus the approximate value is 1. ? π’”π’Šπ’ 𝟐𝜽 + 𝒕𝒂𝒏 𝜽 𝟐𝜽 β‰ˆ 𝟐𝜽+𝜽 𝟐𝜽 = πŸ‘ 𝟐 𝒄𝒐𝒔 πŸ’πœ½ βˆ’πŸ 𝜽 π’”π’Šπ’ 𝟐𝜽 β‰ˆ πŸβˆ’ πŸ’πœ½ 𝟐 𝟐 βˆ’πŸ πœ½Γ—πŸπœ½ = πŸβˆ’ πŸπŸ” 𝜽 𝟐 𝟐 βˆ’πŸ 𝟐 𝜽 𝟐 = πŸ– 𝜽 𝟐 𝟐 𝜽 𝟐 =πŸ’ ? ?

28 Exercises 5F Pearson Pure Mathematics Year 2/AS Page 134


Download ppt "Jfrost@tiffin.kingston.sch.uk www.drfrostmaths.com @DrFrostMaths P2 Chapter 5 :: Radians jfrost@tiffin.kingston.sch.uk www.drfrostmaths.com @DrFrostMaths."

Similar presentations


Ads by Google