Presentation is loading. Please wait.

Presentation is loading. Please wait.

Ensemble Experiments based on the convection-allowing model COSMO-DE

Similar presentations


Presentation on theme: "Ensemble Experiments based on the convection-allowing model COSMO-DE"— Presentation transcript:

1 Ensemble Experiments based on the convection-allowing model COSMO-DE
Deutscher Wetterdienst Ensemble Experiments based on the convection-allowing model COSMO-DE Susanne Theis Project COSMO-DE-EPS

2 Deutscher Wetterdienst
Overview Motivation for Project COSMO-DE-EPS Tasks within Project Current Status and Experiments

3 Motivation for the Project
Deutscher Wetterdienst Motivation for the Project

4 Deutscher Wetterdienst
Numerical Weather Prediction Model COSMO-DE grid box size: 2,8 km without parametrization of deep convection assimilation of radar data lead time: 0-21 hours operational since April 2007 COSMO-DE COSMO-EU GME

5 Deutscher Wetterdienst
Benefits of COSMO-DE COSMO-EU (7 km) COSMO-DE (2,8 km) captures extremes mm/h

6 Deutscher Wetterdienst
Benefits of COSMO-DE COSMO-EU (7 km) COSMO-DE (2,8 km) looks more realistic mm/h

7 Deutscher Wetterdienst
What about Deterministic Predictability? Scale Diagram Predictability synoptic scale 1 week typical time scale convective scale 1 hour Man koennte sagen: Kein Thema fuer den DWD, denn wir schauen nicht auf solch lange Vorhersagezeitraeume! Aber Vorsicht: Vorhersagbarkeit ist skalenabhaengig! (Skalendiagramm beschreiben) (Fehlerwachstum) Vorhersagbarkeit lang fuer grosse Skalen, kurz fuer kleine Skalen Fazit: Auch bei Festhalten der Vorhersagedauer, aber gleichzeitigem Verfeinern der betrachteten Skala  Grenzen determ. Vorhersagbarkeit Mit der hochauflösenden Modellierung laufen wir auch bei 18 Stunden Vorhersagen in Bereiche, wo Vorhersagbarkeit ein Thema ist. 100 m 10 km 1000 km typical spatial scale lead time

8 Deutscher Wetterdienst
COSMO-DE (2,8 km) need for probabilistic approach  so that user really gets benefit mm/h

9 Deutscher Wetterdienst
Project COSMO-DE-EPS: Development of a convection-allowing Ensemble Prediction System Susanne Theis, Christoph Gebhardt, Michael Buchhold, Marcus Paulat, Roland Ohl, Zied Ben Bouallègue, Carlos Peralta

10 Deutscher Wetterdienst
Project COSMO-DE-EPS: Development of a convection-allowing Ensemble Prediction System Aims & Tasks

11 Deutscher Wetterdienst
Setting up an Ensemble System several predictions = „members“ of ensemble  very large investment in computing power „variations“ in prediction system ensemble products: probability density fct - exceedance probs quantiles - „spread“ mean ... Benefit for user: uncertainty range, risk Need to cover the whole chain! (cannot specialize, cannot reduce the complexity) Supercomputer is our most important partner

12 Deutscher Wetterdienst
Aim of the Project How many ensemble members? 20 members, pre-operational 40 members, operational When? 2010 pre-operational 2011 operational

13 Deutscher Wetterdienst
Aim of the Project How many ensemble members? 20 members, pre-operational 40 members, operational When? 2010 pre-operational 2011 operational conditional on supercomputer

14 Deutscher Wetterdienst
Tasks within Project implementation of perturbations verification & diagnostics post-processing visualization early user feedback

15 Implementation of Perturbations
Deutscher Wetterdienst Implementation of Perturbations

16 Deutscher Wetterdienst
Implementation of Perturbations X X initial conditions boundary conditions model physics

17 Deutscher Wetterdienst
Implementation of Perturbations X X initial conditions boundary conditions model physics start with a simple approach

18 Deutscher Wetterdienst
Perturbation of Boundary Conditions

19 Deutscher Wetterdienst
Perturbation of Boundary Conditions Reminder: operational chain COSMO-DE COSMO-EU GME

20 Deutscher Wetterdienst
Perturbation of Boundary Conditions Part of AEMet Ensemble (AEMet, Spain) Part of COSMO-SREPS (ARPA-SIMC, Bologna) COSMO-DE-EPS (DWD, Germany) (García-Moya et al., 2007) (Marsigli et al., 2008) (Gebhardt et al., 2009)

21 Deutscher Wetterdienst
Perturbation of Boundary Conditions Part of AEMet Ensemble (AEMet, Spain) Part of COSMO-SREPS (ARPA-SIMC, Bologna) COSMO-DE-EPS (DWD, Germany) GME IFS UM GFS COSMO-DE (2,8km) COSMO COSMO COSMO COSMO

22 Deutscher Wetterdienst
Perturbation of Boundary Conditions Part of AEMet Ensemble (AEMet, Spain) Part of COSMO-SREPS (ARPA-SIMC, Bologna) COSMO-DE-EPS (DWD, Germany) GME IFS UM GFS COSMO-DE (2,8km) COSMO COSMO COSMO COSMO long-term Plan: take boundaries from ICON Ensemble

23 Deutscher Wetterdienst
Perturbation of Initial Conditions

24 Deutscher Wetterdienst
Perturbation of Initial Conditions current work: - perturb “nudging” at forecast start - use differences between control and COSMO-SREPS plans: Ensemble Transform Kalman Filter (COSMO project KENDA)

25 Deutscher Wetterdienst
Perturbation of the Model

26 Deutscher Wetterdienst
Perturbation of the Model Alter parameters in physics parametrizations entr_sc=  entrain_sc=0.002 rlam_heat=1.  rlam_heat=10. rlam_heat=1.  rlam_heat=0.1 …q_crit… …tur_len… 1 2 3 4 5 5 4 3 2 1 requires careful tuning  affect forecast, but not long-term quality

27 Deutscher Wetterdienst
Current Experiments experimental set-up - examples

28 Deutscher Wetterdienst
Current Status X initial conditions boundary conditions model physics

29 Deutscher Wetterdienst
Current Experiments 1 2 3 4 5 GME IFS UM NCEP no perturbation of initial conditions

30 Deutscher Wetterdienst
Current Experiments 1 2 3 4 5 IFS GME GFS UM no perturbation of initial conditions

31 Deutscher Wetterdienst
2 July 2007, 00 UTC + 24h 24h accumulations of precipitation [mm] mm/24h

32 Deutscher Wetterdienst
Current Experiments 1 2 3 4 5 IFS GME GFS UM no perturbation of initial conditions

33 Deutscher Wetterdienst
2 July 2007, 00 UTC + 24h 24h accumulations of precipitation [mm] mm/24h

34 - how do perturbations affect the forecast?
Deutscher Wetterdienst Ensemble Diagnostics - how do perturbations affect the forecast?

35 Deutscher Wetterdienst
Effect of perturbations on precipitation boundaries: dominate after a few hours (not necessarily, also case-dependent) physics: dominate during first few hours (Gebhardt et al., 2009)

36 Deutscher Wetterdienst
Ensemble Dispersion (precipitation) Normalized Variance Difference = variance (BC only) - variance (PHY only) normalized by sum of variances (Gebhardt et al., 2009)

37 Deutscher Wetterdienst
Ensemble Dispersion (precipitation) Normalized Variance Difference = variance (BC only) - variance (PHY only) normalized by sum of variances for individual days (Gebhardt et al., 2009)

38 Ensemble Verification
Deutscher Wetterdienst Ensemble Verification - how good is the Ensemble (at this stage)?

39 Deutscher Wetterdienst
Verification Data Sets RADAR

40 Deutscher Wetterdienst
Verification Data Sets RADAR Longest Period: 1 July – 16 Sep 2008

41 Deutscher Wetterdienst
Probabilistic Verification Measures Traditional: - Brier Score, Brier Skill Score ROC curve Reliability Diagram Talagrand Diagram Spread-Skill Relation with focus on precipitation, also scale-dependent

42 Deutscher Wetterdienst
Verification Results

43 Deutscher Wetterdienst
Verification Results current setup X without initial condition perturbations postprocessing ! boundary conditions model physics

44 Deutscher Wetterdienst
Verification Results ensemble is superior to single simulation ensemble is underdispersive current setup X without initial condition perturbations postprocessing ! boundary conditions model physics observation

45 Deutscher Wetterdienst
As a Reminder: Tasks within Project implementation of perturbations verification & diagnostics post-processing visualization early user feedback

46 Deutscher Wetterdienst
Early User Feedback - work towards acceptance - work towards useful interpretation

47 Early User Feedback - Forecasters (DWD)
Deutscher Wetterdienst Early User Feedback - Forecasters (DWD)

48 Deutscher Wetterdienst
EPS Product Example: Probability Maps „Event somewhere in 2,8km-Box“ %

49 Deutscher Wetterdienst
EPS Product Example: Probability Maps „Event somewhere in 2,8km-Box“ Forecasters: Probabilities are too low! %

50 Deutscher Wetterdienst
EPS Product Example: Probability Maps „Event somewhere in 2,8km-Box“ Reason: Forecasters are used to larger reference regions  Experiment: present probabilities on coarser grid Forecasters: Probabilities are too low! %

51 Deutscher Wetterdienst
EPS Product Example: Probability Maps „Event somewhere in 2,8km-Box“ „Event somewhere in 28km-Box“ %

52 Deutscher Wetterdienst
EPS Product Example: Probability Maps „Event somewhere in 2,8km-Box“ „Event somewhere in 28km-Box“ Relevance of reference region! %

53 Deutscher Wetterdienst
Literature about perception of ensemble forecasts: Demeritt, D., Cloke, H., Pappenberger, F., Thielen, J., Bartholmes, J. and M.-H. Ramos (2007): Ensemble predictions and perceptions of risk, uncertainty, and error in flood forecasting. Environmental Hazards 7, Gigerenzer, G., Hertwig, R., van den Broek, E., Fasolo, B. and K.V.Katsikopoulos (2005): „A 30% Chance of Rain Tomorrow“: How does the public understand probabilistic weather forecasts? Risk Analysis 25(3), Joslyn, S., Pak, K., Jones, D., Pyles, J. and E. Hunt (2007): The effect of probabilistic information on threshold forecasts. Weather and Forecasting 22, Morss, R.E., Demuth, J.L. and J.K. Lazo (2008): Communicating Uncertainty in Weather Forecasts: A Survey of the U.S. Public. Weather and Forecasting 23, Morss, R.E., Wilhelmi, V.W., Downton, M.W. and E. Gruntfest (2005): Flood risk, uncertainty, and scientific information for decision making: Lessons from an interdisciplinary project. Bulletin of the American Meteorological Society 86(11), National Research Council (2006): Completing the Forecast: Characterizing and Communicating Uncertaintiy for Better Decisions Using Weather and Climate Forecasts. National Academies Press, 124 pp. Nobert, S., Demeritt, D. and H. Cloke (2009): Using Ensemble Predictions for Operational Flood Forecasting: Lessons from Sweden. Submitted to Journal of Flood Risk Management. Roulston, M.S., Bolton, G.E., Kleit, A.N. and A.L. Sears-Collins (2006): A laboratory study of the benefits of including uncertainty information in weather forecasts. Weather and Forecasting 21,

54 Back to the Project COSMO-DE-EPS: Summary and Challenges
Deutscher Wetterdienst Back to the Project COSMO-DE-EPS: Summary and Challenges

55 Deutscher Wetterdienst
Summary of Project COSMO-DE-EPS setting up a convection-permitting ensemble with prospect of becoming operational dealing with all parts of forecast chain (perturbations, products, postprocessing, verification, users) simple approach first, then keep improving

56 Deutscher Wetterdienst
Challenges of Project COSMO-DE-EPS scientific representation of uncertainties e.g. getting appropriate spread technical implementation e.g. amount of data communication to the user e.g. appropriate spatial scale

57 Thank You For Your Attention
Deutscher Wetterdienst Thank You For Your Attention

58 Deutscher Wetterdienst
Extra Slides

59 More Diagnostics & Verification
Deutscher Wetterdienst More Diagnostics & Verification

60 Deutscher Wetterdienst
Ensemble Dispersion (precipitation) Spread Ratio #(GPall members) = #(GPat least 1 member) Event: > 0.1 mm/h physics only boundary conditions only (Gebhardt et al., 2009)

61 Deutscher Wetterdienst
Talagrand Diagram 24h precipitation observation Rank

62 Deutscher Wetterdienst
Example of Verification

63 Deutscher Wetterdienst
Example of Verification Frequencies of precipitation amount for ensemble forecasts (members) for observations

64 Deutscher Wetterdienst
Example of Verification Frequencies of precipitation amount for ensemble forecasts (members) for observations Conditional on Categories of Ensemble Mean Forecast: Ens.Mean: no & low precip Ens.Mean: slight precip Ens.Mean: medium & heavy precip

65 Deutscher Wetterdienst
Example of Verification Frequencies of precipitation amount for ensemble forecasts (members) for observations Conditional on Categories of Ensemble Mean Forecast: Ens.Mean: no & low precip Ens.Mean: slight precip Ens.Mean: medium & heavy precip Lead time: 0 - 6 hours

66 Deutscher Wetterdienst
Example of Verification Frequencies of precipitation amount for ensemble forecasts (members) for observations Conditional on Categories of Ensemble Mean Forecast: Ens.Mean: no & low precip Ens.Mean: slight precip Ens.Mean: medium & heavy precip Lead time: hours

67 Deutscher Wetterdienst
Example of Verification Frequencies of precipitation amount for ensemble forecasts (members) for observations Conditional on Categories of Ensemble Mean Forecast: Ens.Mean: no & low precip Ens.Mean: slight precip Ens.Mean: medium & heavy precip add IC perturbations and statistical PP Lead time: hours

68 Deutscher Wetterdienst
ROC Curve Reliability Diagram ROC area: 0.90 Threshold: 0.1mm/24h

69 Deutscher Wetterdienst
ROC Curve Reliability Diagram ROC area: 0.85 Threshold: 10mm/24h

70 Deutscher Wetterdienst
Verification results for 2m-temperature 12UTC threshold: 25°C ROC Reliability area=0.94

71 Deutscher Wetterdienst
Brier Skill Score (BSS) 0.4 0.2 0.0 24 hour precipitation Reference Forecast: Climatology from Period Threshold [mm/24h]

72 Deutscher Wetterdienst
Verification results: single member quality check Frequency Bias Index 24 hours accumulated precipitation red line shows the deterministic COSMO-DE all members are within a reasonable range

73 Deutscher Wetterdienst

74 Deutscher Wetterdienst
Verification results: Brier Skill Score 24 hours accumulated precipitation reference: deterministic COSMO-DE 6 hours accumulated precipitation

75 Deutscher Wetterdienst

76 Deutscher Wetterdienst

77 Deutscher Wetterdienst

78 Deutscher Wetterdienst

79 Deutscher Wetterdienst

80 Deutscher Wetterdienst

81 Statistical Postprocessing
Deutscher Wetterdienst Statistical Postprocessing

82 Deutscher Wetterdienst
Statistical Postprocessing several predictions = „members“ of ensemble „variations“ in prediction system ensemble products: probability density fct - exceedance probs quantiles - „spread“ mean ... Benefit for user: uncertainty range, risk Need to cover the whole chain! (cannot specialize, cannot reduce the complexity) Supercomputer is our most important partner Aim: improve quality Focus: precipitation

83 Deutscher Wetterdienst
Statistical Postprocessing Methods: Logistic Regression + spatio-temporal neighbourhood + lagged average ensemble 2. Bayesian Approach cooperation with University of Bonn  calibration of probabilities enhance sample  entire pdf

84 Deutscher Wetterdienst
Reaching the User

85 Deutscher Wetterdienst
Reaching the user (= “serve mankind”) make ensemble forecast accessible choose a good format and reduce information work towards acceptance work towards correct (useful) interpretation work towards integration into decision making increase trust in forecast provider

86 Visualization in NinJo
Deutscher Wetterdienst Visualization in NinJo make forecasts accessible - choose formats

87 Deutscher Wetterdienst
Visualization in NinJo NinJo = visualization tool for forecasters Challenge: amount of data good communication of complex matters must fit into an existing system (NinJo) Visualization is part of project: end-to-end approach

88 Deutscher Wetterdienst
EPS Product Example: Exceedance Probabilities in % Probability of RR > 1 mm/h

89 Deutscher Wetterdienst
EPS Product Example: 1h-sums of precipitation [mm] 2m-temperature [°C] 10% probability (= risk) Quantiles range of 80% probability (= uncertainty)

90 Deutscher Wetterdienst
Further Plans: Ensemble Navigation Window (draft) also possible to look at individual members


Download ppt "Ensemble Experiments based on the convection-allowing model COSMO-DE"

Similar presentations


Ads by Google