Presentation is loading. Please wait.

Presentation is loading. Please wait.

Kamin Whitehouse David Culler WSNA, September

Similar presentations


Presentation on theme: "Kamin Whitehouse David Culler WSNA, September"— Presentation transcript:

1 Kamin Whitehouse David Culler WSNA, September 28 2002
Macro-calibration Kamin Whitehouse David Culler WSNA, September

2 Introduction r* = f(r, ß) Light Sensor Response Stimulus Observed
Desired Light Sensor

3 Introduction

4 Introduction Macro-Calibration Calibrate the network, not the devices
Exploit sensor redundancy Global optimization

5 Talk Outline Distance estimation Traditional (micro-)calibration
Iterative calibration Macro-calibration Joint calibration

6 Calamari Overview Antenna Speaker Tone Detector Microphone

7 Acoustic Time of Flight
Calamari Overview Transmit Time Receive Time Acoustic Time of Flight

8 Experimental Setup

9 No Calibration: 74.6% Error

10 Traditional Calibration
Time Adjust transmitter and receiver to minimize error Observed Desired Distance

11 Chicken or Egg? TOF Transmit Receive Tns Receive TOF Transmit Rcv TOF

12 Iterative Calibration
Tref T T R R

13 Iterative Calibration: 19.7%

14 Naive Calibration: 21% Error

15 Calibration as Parameter Estimation
Stimulus Response Observed r* = f(r, ß) Desired

16 Parameter Estimation r*1 = ß1 + ß2r1 + ß3r21 r*2 = ß1 + ß2r2 + ß3r22
Stimulus Response r* = f(r, ß) r*1 = ß1 + ß2r1 + ß3r21 r5 r*2 = ß1 + ß2r2 + ß3r22 r*6 r4 r*3 = ß1 + ß2r3 + ß3r23 r*5 r3 r*4 r*4 = ß1 + ß2r4 + ß3r24 r2 r*3 r1 r*5 = ß1 + ß2r5 + ß3r25 r*2 r*1

17 Joint Calibration Tk, Rk Ti, Ri dik = f(tik, Ti, Rk)

18 Joint Calibration

19 Joint Parameter Estimation
d12 = f(t12, T1, R2) d13 = f(t13, T1, R3) 2n parameters d14 = f(t14, T1, R4) n2 equations d21 = f(t21, T2, R1) d23 = f(t23, T1, R2)

20 Joint Calibration: 10.1%

21 Conclusions Iterative Joint Calibration Micro-calibration
One-by-one Observed each device Macro-calibration All-at-once Observed system Single Reference Propogates Noise Exploits Redundancy Cancels Noise Greedy Optimizes each device Global maximum Optimizes system

22 Future Work Non-linear parameter estimation Other sensor domains
EM MCMC Other sensor domains Auto-calibration Post-deployment Unknown distances

23 Auto-calibration f(tik, Ti, Rk) = f(tki, Tk, Ri) dik = dki Tk Rk Rk Tk
TOF Rk Tk TOF

24 Auto Calibration dik <= dhk + dhk dik <= dkh + dhk dik dhk dkh

25 Auto-calibration Choose parameters that maximize consistency while satisfying all constraints A quadratic program arises Minimize: Σik |dik – dki| Subject to: dih + djk - dhk >= for all trianglehik

26 Joint Calibration Revisited
d12 = f(t12, T1, R2) 2n parameters d13 = f(t13, T1, R3) n2 equations d14 = f(t14, T1, R4) Up to n2-2n distances can be unknown d21 = f(t21, T2, R1) d23 = f(t23, T1, R2)


Download ppt "Kamin Whitehouse David Culler WSNA, September"

Similar presentations


Ads by Google