Download presentation
Presentation is loading. Please wait.
1
Kamin Whitehouse David Culler WSNA, September 28 2002
Macro-calibration Kamin Whitehouse David Culler WSNA, September
2
Introduction r* = f(r, ß) Light Sensor Response Stimulus Observed
Desired Light Sensor
3
Introduction
4
Introduction Macro-Calibration Calibrate the network, not the devices
Exploit sensor redundancy Global optimization
5
Talk Outline Distance estimation Traditional (micro-)calibration
Iterative calibration Macro-calibration Joint calibration
6
Calamari Overview Antenna Speaker Tone Detector Microphone
7
Acoustic Time of Flight
Calamari Overview Transmit Time Receive Time Acoustic Time of Flight
8
Experimental Setup
9
No Calibration: 74.6% Error
10
Traditional Calibration
Time Adjust transmitter and receiver to minimize error Observed Desired Distance
11
Chicken or Egg? TOF Transmit Receive Tns Receive TOF Transmit Rcv TOF
12
Iterative Calibration
Tref T T R R
13
Iterative Calibration: 19.7%
14
Naive Calibration: 21% Error
15
Calibration as Parameter Estimation
Stimulus Response Observed r* = f(r, ß) Desired
16
Parameter Estimation r*1 = ß1 + ß2r1 + ß3r21 r*2 = ß1 + ß2r2 + ß3r22
Stimulus Response r* = f(r, ß) r*1 = ß1 + ß2r1 + ß3r21 r5 r*2 = ß1 + ß2r2 + ß3r22 r*6 r4 r*3 = ß1 + ß2r3 + ß3r23 r*5 r3 r*4 r*4 = ß1 + ß2r4 + ß3r24 r2 r*3 r1 r*5 = ß1 + ß2r5 + ß3r25 r*2 r*1
17
Joint Calibration Tk, Rk Ti, Ri dik = f(tik, Ti, Rk)
18
Joint Calibration
19
Joint Parameter Estimation
d12 = f(t12, T1, R2) d13 = f(t13, T1, R3) 2n parameters d14 = f(t14, T1, R4) n2 equations … d21 = f(t21, T2, R1) d23 = f(t23, T1, R2)
20
Joint Calibration: 10.1%
21
Conclusions Iterative Joint Calibration Micro-calibration
One-by-one Observed each device Macro-calibration All-at-once Observed system Single Reference Propogates Noise Exploits Redundancy Cancels Noise Greedy Optimizes each device Global maximum Optimizes system
22
Future Work Non-linear parameter estimation Other sensor domains
EM MCMC Other sensor domains Auto-calibration Post-deployment Unknown distances
23
Auto-calibration f(tik, Ti, Rk) = f(tki, Tk, Ri) dik = dki Tk Rk Rk Tk
TOF Rk Tk TOF
24
Auto Calibration dik <= dhk + dhk dik <= dkh + dhk dik dhk dkh
25
Auto-calibration Choose parameters that maximize consistency while satisfying all constraints A quadratic program arises Minimize: Σik |dik – dki| Subject to: dih + djk - dhk >= for all trianglehik
26
Joint Calibration Revisited
d12 = f(t12, T1, R2) 2n parameters d13 = f(t13, T1, R3) n2 equations d14 = f(t14, T1, R4) Up to n2-2n distances can be unknown … d21 = f(t21, T2, R1) d23 = f(t23, T1, R2)
Similar presentations
© 2024 SlidePlayer.com. Inc.
All rights reserved.