Presentation is loading. Please wait.

Presentation is loading. Please wait.

Chapter 6: Properties of Solutions

Similar presentations


Presentation on theme: "Chapter 6: Properties of Solutions"— Presentation transcript:

1 Chapter 6: Properties of Solutions
A solution is formed of a substance dissolved in a liquid. Solute + Solvent = Solution Solutions are homogeneous mixtures of two or more pure substances. In a solution, the solute is dispersed uniformly throughout the solvent.

2 الخواص الترابطية للمحاليل Colligative Properties of Solutions
عند اضافة مذاب غير متطاير (مثل السكر) إلى الماء، فإن وجود جزيئات السكر في المحلول سيؤدي إلى اضعاف قابلية جزيئات الماء بالإنطلاق والتحول من المحلول إلى الحالة البخارية. ان هذا يؤدي إلى انخفاض في الضغط البخاري للمحلول السكري مقارنة مع الماء النقي، وهذا الانخفاض في الضغط البخاري يؤدي إلى تغير في بعض خواص المذيب وهذا التغير يتناسب مع كمية المذاب المضافة.

3 والارتفاع في درجة الغليان والانخفاض في درجة التجمد والضغط الازموزي
والارتفاع في درجة الغليان والانخفاض في درجة التجمد والضغط الازموزي. وطالما أن هذه الخواص مترابطة مع بعضها من خلال نشأتها المشتركة لذلك تدعى بالخواص الترابطية Colligative Properties . تشترك هذه الخواص في كونها لا تعتمد على طبيعة المادة المذابة الموجودة ولكن تعتمد على عدد جزيئات المادة المذابة نسبة إلى العدد الكلي للجزيئات الموجودة فقط.

4 الخواص الترابطية للمحاليل Colligative Properties of Solutions
Changes in Colligative properties depend only on the number of solute particles present, not on the identity of the solute particles. Colligative properties are include: Vapor pressure lowering Boiling point elevation freezing point depression Osmotic pressure depression

5 Vapor Pressure Because of solute-solvent intermolecular attraction, higher concentrations of nonvolatile solutes make it harder for solvent to escape to the vapor phase. Therefore, the vapor pressure of a solution is lower than that of the pure solvent.

6 الانخفاض في الضغط البخاري Depression of Vapor Pressure
لغرض فهم التوازن بين المحلول وبخاره نفترض: 1- أن سائل نقى تم وضعة في اناء مفرغ من الهواء فأن السائل سيتبخر حتى يملأ بخاره الفضاء الهوائي الموجود فوق السائل مع بقاه درجة الحرارة ثابته ويحدث التوازن بين السائل وبخاره ولذلك فإن ضغط البخار المتولد عند التوازن سيساوي P الشكل المقابل ، 2- وإذا تمت إذابة كمية قليلة من مادة غير متطايرة في ذلك السائل نلاحظ أن الضغط البخاري المتولد فوق المحلول P عند الاتزان يكون اقل من الضغط البخاري المتولد فوق السائل النقي

7 Vapor Pressure Lowering
The vapor pressure of a solution of nonvolatile solutes is always less than that of the pure solvent at the same temperature. This general result is stated by Raoult’s Law (a solid-liquid solution) says that : PA = XAPA Where PA = Vapor pressure above the surface XA is the mole fraction of compound A PA is the normal vapor pressure of A at that temperature

8 Raoult’s Law (a solid-liquid solution) says that the vapor pressure of an ideal solution (Ptotal) is directly proportional to the partial vapor pressure (PA) of the pure solvent times the mole fraction of the solute. Ptotal = XA PA

9 Raoult’s Law (a liquid-liquid solution) states that:
The vapor pressure of an ideal solution of two liquids (Ptotal) is directly proportional to the vapor pressures of the pure liquids, the mole fractions of the liquids (XA and XB), and the partial vapor pressure (PA and PB) of the liquids above the solution Ptotal= PA + PB = XAP  A + XBP  B

10

11

12 Example Liquids A and B form an ideal solution. At 45oC, the vapor pressures of pure A and pure B are 66 and 88 Torr, respectively. Calculate the composition of the vapor in equilibrium with a solution containing xA=0.36.

13 Limitations on Raoult's Law
Very dilute solutions obey Raoult's Law In an ideal solution, it takes exactly the same amount of energy for a solvent molecule to break away from the surface of the solution as it did in the pure solvent. The forces of attraction between solvent and solute are exactly the same as between the original solvent molecules

14

15 Raoult's Law and Colligative Properties
Raoult's Law states that the saturated vapor pressure of a solution is going to be lower than that of the pure solvent at any temperature.

16 Boiling Point Elevation and Freezing Point Depression
Nonvolatile solute-solvent interactions also cause solutions to have higher boiling points and lower freezing points than the pure solvent.

17 Boiling Point Elevation
The change in boiling point is proportional to the molality of the solution: Tb = Kb  m where Kb is the molal boiling point elevation constant, a property of the solvent.

18 Tb is added to the normal boiling point of the solvent.

19 Freezing Point Depression
The change in freezing point can be found similarly: Tf = Kf  m Here Kf is the molal freezing point depression constant of the solvent. Tf is subtracted from the normal freezing point of the solvent.

20 Boiling Point Elevation and Freezing Point Depression
Note that in both equations, T does not depend on what the solute is, but only on how many particles are dissolved. Tb = Kb  m Tf = Kf  m

21 Example 1 3.75g of a nonvolatile solute was dissolved in 95g of acetone. The boiling point was 56.50°C compared with 55.95°C for pure acetone. If Kb= 1.71 K kg/mol for acetone, what is the approximate molar mass of the solute?

22


Download ppt "Chapter 6: Properties of Solutions"

Similar presentations


Ads by Google