Presentation is loading. Please wait.

Presentation is loading. Please wait.

ME 475/675 Introduction to Combustion

Similar presentations


Presentation on theme: "ME 475/675 Introduction to Combustion"β€” Presentation transcript:

1 ME 475/675 Introduction to Combustion
Lecture 16 Chemical kinetics

2 Announcements HW 6 Monday, Thank you for coming early to the midterm.

3 Chapter 4 Chemical Kinetics
Describes rates at which: Reactants are consumed and products are produced, Thermal energy is produced (exothermal) or consumed (endothermal) β€œGlobal” Combustion Reaction (molar based) 1 𝐹 𝑓𝑒𝑒𝑙 +π‘Žπ‘‚π‘₯ π‘œπ‘₯π‘–π‘‘π‘–π‘§π‘’π‘Ÿ β†’π‘π‘ƒπ‘Ÿ(π‘π‘Ÿπ‘œπ‘‘π‘’π‘π‘‘π‘ ) On what does reaction rate depend? In general it: Increases with reactant molar concentrations and temperature Decreases with product molar concentrations Define Molar Concentration of species 𝑖, 𝑖 (number density) 𝑖 = 𝑁 𝑖 𝑉 = πœ’ 𝑖 𝑁 𝑉 = πœ’ 𝑖 𝑃 𝑅 𝑒 𝑇 = 𝑃 𝑖 𝑅 𝑒 𝑇 𝑁 𝑉 = 𝑃 𝑅 𝑒 𝑇 = πœ’ 𝑖 π‘š π‘€π‘Š 𝑀𝑖π‘₯ 𝑉 = πœ’ 𝑖 ρ π‘€π‘Š 𝑀𝑖π‘₯ Units: 1 π‘˜π‘šπ‘œπ‘™π‘’ 𝑖 π‘š π‘š 100π‘π‘š π‘šπ‘œπ‘™π‘’ 𝑖 1 π‘˜π‘šπ‘œπ‘™π‘’ 𝑖 = π‘šπ‘œπ‘™π‘’ 𝑖 𝑐𝑐 Number of molecules n = N*NAV Avogadro's Number 𝑁 𝐴𝑉 =6.022βˆ— π‘šπ‘œπ‘™π‘’π‘π‘’π‘™π‘’π‘  π‘˜π‘šπ‘œπ‘™π‘’ Number of molecules in 12 kg of C12 𝑁 𝐴 =6.022βˆ— π‘šπ‘œπ‘™π‘’π‘π‘’π‘™π‘’π‘  π‘šπ‘œπ‘™π‘’ Number of molecules in 12 g of C12

4 Global Rate Equations 𝑑 𝐹 𝑑𝑑 =βˆ’ π‘˜ 𝐺 𝑇 𝐹 𝑛 𝑂π‘₯ π‘š β€œBlack Box” Approach
𝐹+π‘Žπ‘‚π‘₯β†’π‘π‘ƒπ‘Ÿ 𝑑 𝐹 𝑑𝑑 =βˆ’ π‘˜ 𝐺 𝑇 𝐹 𝑛 𝑂π‘₯ π‘š π‘˜ 𝐺 𝑇 = Global rate coefficient, strongly dependent on temperature T π‘š,𝑛= Reaction order of Oxidizer and Fuel π‘š+𝑛= Overall reaction order Different π‘˜ 𝐺 𝑇 and π‘š,𝑛 for different temperature and pressure ranges pp (Chapter 5) β€œBlack Box” Approach Based on measurements and correlations (empirical) Not based on β€œcausality” understanding individual reaction steps, which may involve intermediate species Overall global reaction may involve many intermediate reaction steps

5 Multi-step Reaction Example Overall Reaction: 2 𝐻 2 + 𝑂 2 β†’2 𝐻 2 𝑂 (hydrogen combustion) H-H O-O H-O-H Many possible intermediate, elementary reactions steps Each step breaks one bond, and forms one bond 𝐻 2 + 𝑂 2 →𝐻 𝑂 2 +𝐻 (𝐻 𝑂 2 = hydroperoxy radical) H-H O-O H-O-O H 𝐻+ 𝑂 2 →𝑂𝐻+𝑂 H O-O O-H O 𝑂𝐻+ 𝐻 2 β†’ 𝐻 2 𝑂+𝐻 O-H H-H H-O-H H 𝐻+ 𝑂 2 +𝑀→𝐻 𝑂 2 +𝑀 (𝑀= passive species, process termination step) H O-O H-O-O Free Radicals = reactive, short-lived molecules with unpaired electron Unpaired with proton, Charged, in this example: 𝐻 𝑂 2 , 𝐻, 𝑂𝐻, 𝑂

6 Bimolecular Reactions
Two molecules react, form two new molecules 𝐴+𝐡→𝐢+𝐷 For example: one step of multi-step reaction: 𝐻 2 + 𝑂 2 →𝐻 𝑂 2 +𝐻 Rate for this elementary reaction 𝑑 𝐴 𝑑𝑑 =βˆ’ π‘˜ π‘π‘–π‘šπ‘œπ‘™π‘’π‘ 𝐴 1 𝐡 1 = 𝑑 𝐡 𝑑𝑑 =βˆ’ 𝑑 𝐢 𝑑𝑑 =βˆ’ 𝑑 𝐷 𝑑𝑑 π‘˜ π΅π‘–π‘šπ‘œπ‘™π‘’ =𝑓𝑛 𝑇 , but is theoretically-based Units π‘˜ π‘π‘–π‘šπ‘œπ‘™π‘’π‘ = π‘š 3 π‘˜π‘šπ‘œπ‘™βˆ—π‘  Use collision theory to find π‘˜ π΅π‘–π‘šπ‘œπ‘™π‘’ During time 𝑑, an A particle, of diameter 𝜎, moving at speed 𝑣, β€œsweeps” volume πœ‹ 𝜎 𝑣𝑑 If it is in a region of stationary B particles, also of diameter 𝜎, and number density 𝑛 𝐡 𝑉 , then the number of collisions per time is: 𝑛 𝐡 𝑉 πœ‹ 𝜎 2 𝑣 π‘π‘œπ‘™π‘™π‘–π‘ π‘–π‘œπ‘›π‘  π‘‘π‘–π‘šπ‘’

7 Collision Rate between all A and B particles
If all A and B particles are actually moving randomly (with a Maxwellian velocity distribution) with average speed 𝑣 (which depends on temperature) Can be shown (CBS) that the rate at which a single moving particle A (diameter 𝜎 𝐴 ) collides with a field of randomly moving B ( 𝜎 𝐡 ) particles is π‘π‘œπ‘™π‘™π‘–π‘ π‘–π‘œπ‘›π‘  𝑠𝑒𝑐 𝑍 𝑐 = 2 𝑛 𝐡 𝑉 πœ‹ 𝜎 𝐴𝐡 2 𝑣 𝐴 2 bigger than might be expected from last expression, due to motion Where 𝜎 𝐴𝐡 = 𝜎 𝐴 + 𝜎 𝐡 2 and CBS 𝑣 𝐴 = 8 π‘˜ 𝐡 𝑇 πœ‹ π‘š 𝐴 Now consider many A particles, with number density 𝑛 𝐴 𝑉 The number of collisions between all A’s and B’s per volume and time is 𝑍 𝐴𝐡 𝑉 = 𝑛 𝐴 𝑉 𝑛 𝐡 𝑉 πœ‹ 𝜎 𝐴𝐡 π‘˜ 𝐡 𝑇 πœ‹πœ‡ 𝑛 𝐴 = 𝑁 𝐴 𝑁 𝐴𝑉 , 𝑛 𝐡 = 𝑁 𝐡 𝑁 𝐴𝑉 ,and CBS πœ‡= π‘š 𝐴 π‘š 𝐡 π‘š 𝐴 + π‘š 𝐡

8 Relation to reaction rate
βˆ’ 𝑑 𝐴 𝑑𝑑 = 𝑍 𝐴𝐡 𝑉 π‘ƒπ‘Ÿπ‘œπ‘π‘Žπ‘π‘–π‘™π‘–π‘‘π‘¦ π‘π‘œπ‘™π‘™π‘–π‘ π‘–π‘œπ‘› π‘™π‘’π‘Žπ‘‘π‘  π‘‘π‘œ π‘Ÿπ‘’π‘Žπ‘π‘‘π‘–π‘œπ‘› π‘˜π‘šπ‘œπ‘™π‘’π‘  𝐴 π‘šπ‘œπ‘™π‘’π‘π‘’π‘™π‘’π‘  𝐴 = 𝑍 𝐴𝐡 𝑉 𝒫 1 𝑁 𝐴𝑉 𝒫=π‘βˆ—π‘’π‘₯𝑝 βˆ’ 𝐸 𝐴 𝑅 𝑒 𝑇 𝑝= Steric factor (collision of geometry) < 1 𝑒π‘₯𝑝 βˆ’ 𝐸 𝐴 𝑅 𝑒 𝑇 = Fraction of all collisions with energy greater than activation energy 𝐸 𝐴 CBS βˆ’ 𝑑 𝐴 𝑑𝑑 = 𝑁 𝐴 𝑁 𝐴𝑉 𝑉 𝑁 𝐡 𝑁 𝐴𝑉 𝑉 πœ‹ 𝜎 𝐴𝐡 π‘˜ 𝐡 𝑇 πœ‹πœ‡ π‘βˆ—π‘’π‘₯𝑝 βˆ’ 𝐸 𝐴 𝑅 𝑒 𝑇 𝑁 𝐴𝑉 βˆ’ 𝑑 𝐴 𝑑𝑑 =𝑝 𝑁 𝐴𝑉 𝜎 𝐴𝐡 2 𝐴 𝐡 8πœ‹ π‘˜ 𝐡 𝑇 πœ‡ 𝑒π‘₯𝑝 βˆ’ 𝐸 𝐴 𝑅 𝑒 𝑇 =π‘˜ 𝑇 𝐴 𝐡 π‘˜ 𝑇 =𝑝 𝑁 𝐴𝑉 𝜎 𝐴𝐡 πœ‹ π‘˜ 𝐡 𝑇 πœ‡ 𝑒π‘₯𝑝 βˆ’ 𝐸 𝐴 𝑅 𝑒 𝑇 but 𝑝 and 𝐸 𝐴 = ?

9 Arrhenius Form For a limited temperature range Three parameter form:
π‘˜ 𝑇 =𝐴𝑒π‘₯𝑝 βˆ’ 𝐸 𝐴 𝑅 𝑒 𝑇 𝐴= pre-exponential factor Three parameter form: π‘˜ 𝑇 =𝐴 𝑇 𝑏 𝑒π‘₯𝑝 βˆ’ 𝐸 𝐴 𝑅 𝑒 𝑇 𝐴, 𝑏 and 𝐸 𝐴 values are tabulated pp 112 (Chapter 4)

10 Other Elementary Reactions
Uni-molecular (isomerization or decomposition) 𝐴→𝐡 (change in structure) 𝐴→𝐡+𝐢 (examples 𝑂 2 β†’2𝑂; 𝐻 2 β†’2𝐻) Measurements show that At high pressures βˆ’ 𝑑 𝐴 𝑑𝑑 = π‘˜ 𝑒𝑛𝑖 𝐴 (first order in pressure) At low pressures βˆ’ 𝑑 𝐴 𝑑𝑑 = π‘˜ 𝑒𝑛𝑖 𝐴 𝑀 (Explain this later): 𝑀= other molecules with which A may collide Ter-molecular 𝐴+𝐡+𝑀→𝐢+𝑀 Recombination (𝐻+𝐻+𝑀→ 𝐻 2 +𝑀; 𝐻+𝑂𝐻+𝑀→ 𝐻 2 𝑂+𝑀) βˆ’ 𝑑 𝐴 𝑑𝑑 = π‘˜ π‘‘π‘’π‘Ÿ 𝐴 𝐡 𝑀 Third order 𝑀= third body, caries energy away If A = B (i.e. 𝐴+𝐴+𝑀→𝐢+𝑀), then βˆ’ 𝑑 𝐴 𝑑𝑑 = 2π‘˜ π‘‘π‘’π‘Ÿ 𝐴 𝐴 𝑀

11 Multi-step Mechanism Reaction Rates
A sequence of reactions leading from Reactants to Products Example: hydrogen combustion (forward and reverse reactions) L steps, i = 1, 2,… L N species, j = 1, 2,… N R1: 𝐻 2 + 𝑂 2 π‘˜ 𝐹1 , π‘˜ 𝑅1 𝐻 𝑂 2 +𝐻 𝑖=1 R2: 𝐻+ 𝑂 2 π‘˜ 𝐹2 , π‘˜ 𝑅2 𝑂𝐻 +𝑂 𝑖=2 R3: 𝑂𝐻+ 𝐻 2 π‘˜ 𝐹3 , π‘˜ 𝑅3 𝐻 2 𝑂+𝐻 𝑖=3 R4: H+ 𝑂 2 +𝑀 π‘˜ 𝐹4 , π‘˜ 𝑅4 𝐻 𝑂 2 +𝑀 𝑖=4 Number of steps: L = 4 Number of Species (𝑗= 𝐻 2 , 𝑂 2 , 𝐻 𝑂 2 ,𝐻, 𝑂𝐻, 𝑂, 𝐻 2 𝑂,𝑀): N = 8 8 time-dependent unknown molar concentrations: 𝑗 𝑑 Need 8 equations (constraints)

12 Species net reaction rates
j = 1 𝑑 𝑂 2 𝑑𝑑 = π‘˜ 𝑅1 𝐻 𝑂 2 𝐻 + π‘˜ 𝑅2 𝑂𝐻 𝑂 + π‘˜ 𝐹3 𝑂𝐻 𝐻 2 βˆ’ π‘˜ 𝐹1 𝐻 2 𝑂 2 βˆ’ π‘˜ 𝐹2 𝐻 𝑂 2 βˆ’ π‘˜ 𝐹4 𝐻 𝑂 2 𝑀 j = 2 𝑑 𝐻 𝑑𝑑 = π‘˜ 𝐹1 𝐻 2 𝑂 2 + π‘˜ 𝑅2 𝑂𝐻 𝑂 + π‘˜ 𝐹3 𝑂𝐻 𝐻 2 + π‘˜ 𝑅4 𝐻 𝑂 2 𝑀 βˆ’ π‘˜ 𝑅1 𝐻𝑂 2 𝐻 βˆ’ π‘˜ 𝐹2 𝐻 𝑂 2 βˆ’ π‘˜ 𝑅3 𝐻 2 𝑂 𝐻 βˆ’ π‘˜ 𝐹4 𝐻 𝑂 2 𝑀 j = 3, 4, …8 Book describes compact notation

13 What happens at equilibrium?
A general reaction π‘Žπ΄+𝑏𝐡 π‘˜ 𝑓 π‘˜ π‘Ÿ 𝑐𝐢+𝑑𝐷 𝑑 𝐴 𝑑𝑑 =π‘Ž βˆ’ π‘˜ 𝑓 𝐴 π‘Ž 𝐡 𝑏 + π‘˜ π‘Ÿ 𝐢 𝑐 𝐷 𝑑 At equilibrium 𝑑 𝐴 𝑑𝑑 =0, so π‘˜ 𝑓 𝐴 π‘Ž 𝐡 𝐡 = π‘˜ π‘Ÿ 𝐢 𝑐 𝐷 𝑑 π‘˜ 𝑓 𝑇 π‘˜ π‘Ÿ 𝑇 = 𝐾 𝐢 𝑇 = 𝐢 𝑐 𝐷 𝑑 𝐴 π‘Ž 𝐡 𝑏 𝐾 𝐢 𝑇 = Equilibrium Constant based on molar concentration

14 End 2017

15 Relationship between Rate Coefficients and Equilibrium Constant (Chapter 2)
π‘Žπ΄+𝑏𝐡 π‘˜ 𝑓 π‘˜ π‘Ÿ 𝑐𝐢+𝑑𝐷 𝐾 𝑃 𝑇 = 𝑃 𝐢 𝑃 π‘œ 𝑐 𝑃 𝐷 𝑃 π‘œ 𝑑 𝑃 𝐴 𝑃 π‘œ π‘Ž 𝑃 𝐡 𝑃 π‘œ 𝑏 𝑖 = 𝑃 𝑖 𝑅 𝑒 𝑇 𝐾 𝐢 𝑇 = π‘˜ 𝐹 𝑇 π‘˜ 𝑅 𝑇 = 𝐢 𝑐 𝐷 𝑑 𝐴 π‘Ž 𝐡 𝑏 = 𝑃 𝐢 𝑅 𝑒 𝑇 𝑐 𝑃 𝐷 𝑅 𝑒 𝑇 𝑑 𝑃 𝐴 𝑅 𝑒 𝑇 π‘Ž 𝑃 𝐡 𝑅 𝑒 𝑇 𝑏 = 𝑃 𝐢 𝑃 π‘œ 𝑐 𝑃 𝐷 𝑃 π‘œ 𝑑 𝑃 𝐴 𝑃 π‘œ π‘Ž 𝑃 𝐡 𝑃 π‘œ 𝑏 𝑃 π‘œ 𝑅 𝑒 𝑇 𝑐+π‘‘βˆ’(π‘Ž+𝑏) 𝑖 = 𝑃 𝑖 𝑅 𝑒 𝑇 𝐾 𝐢 𝑇 = 𝐾 𝑃 𝑇 𝑃 π‘œ 𝑅 𝑒 𝑇 𝑐+π‘‘βˆ’(π‘Ž+𝑏) Or 𝐾 𝑃 𝑇 = 𝐾 𝐢 𝑇 𝑅 𝑒 𝑇 𝑃 π‘œ 𝑐+π‘‘βˆ’(π‘Ž+𝑏) Note: If π‘Ž+𝑏=𝑐+𝑑, then 𝐾 𝑃 𝑇 = 𝐾 𝐢 𝑇

16 Example 4.2 (page 120, turn in next time)
In their survey of experimental determinations of rate constants for the H-H-O system, Nanson and Salimian [reference 10 in book] recommend the following rate coefficient for the reaction 𝑁𝑂+𝑂→𝑁+ 𝑂 2 . π‘˜ 𝑓 =2.80βˆ— 𝑇 1.0 𝑒π‘₯𝑝 βˆ’20,820 𝑇 = π‘π‘š 3 π‘”π‘šπ‘œπ‘™βˆ—π‘  Determine the rate coefficient at 2300 K for the reverse reaction, i.e. 𝑁+ 𝑂 2 →𝑁𝑂+𝑂


Download ppt "ME 475/675 Introduction to Combustion"

Similar presentations


Ads by Google