Download presentation
Presentation is loading. Please wait.
1
Logistic Growth Model for Flower Beetles
“They are one of the most common and most destructive insect pests for grain and other food products stored in silos, warehouses, grocery stores, and homes” Ling Lin, Fan Du
2
Problem
3
Background Pierre François Verhulst (1844–1845)
Why we use logistic growth model Pierre François Verhulst (1844–1845) Population Growth, Biology, Chemistry, Biostatistics, Economics etc..
4
Variables t: time in Days N(t): population size at time t
K: Carrying Capacity r: rate of growth t and N – given data K and r
5
Deriving PDF Given: 𝑵 𝒕 = 𝑲 𝑵 𝟎 𝑵 𝟎 + 𝑲− 𝑵 𝟎 𝒆 −𝒓𝒕 Design matrix:
𝒅𝑵 𝒅𝒓 = −𝑲 𝑵 𝟎 𝑵−𝑲 𝒕 𝒆 𝒕𝒓 ( 𝑵 𝟎 + 𝑲− 𝑵 𝟎 𝒆 −𝒓𝒕 ) 𝟐 𝒅𝑵 𝒅𝒌 = 𝑲 𝑵 𝟎 𝒆 −𝒓𝒕 𝑵 𝟎 + 𝑲− 𝑵 𝟎 𝒆 −𝒓𝒕 𝟐
6
𝑼= 𝑵 𝑲 𝒅𝑵=𝑲 𝒅𝑼 𝟏 𝑲(𝑲𝑼 𝟏−𝑼 ) 𝑲𝒅𝑼= 𝒓𝒅𝒕
7
Initial Fit <- plot(y_obs~t, data=data,main="Fitted Graph", col="black")
Initial estimate K~1000
8
Result r0 K0 r K r0 K0 r K error iter 0.5 1000 0.1181969 1032.8
4 1 874.46 2 500 798.42 r0 K0 r K Error (r<0) (r=0.118, K=1032.8) (r<0, K arbitrary)
9
Datapoints
10
Other Methods Newton-Raphson R-function optim Bounds for parameters
11
What We Learned Very sensitive to initial estimates
Newton – Does not ensure ascent Gauss-Newton –Ascent for Invertible Matrix Bounds are important Table pro con
12
Reference images/69602c fd480bb092161bb963905c5c212.png
Similar presentations
© 2025 SlidePlayer.com. Inc.
All rights reserved.