Download presentation
Presentation is loading. Please wait.
Published byUrsula Owen Modified over 6 years ago
1
Lan Cheng Department of Chemistry The Johns Hopkins University
Ab initio calculations of Infrared spectra for XeF6: Isotope shifts and anharmonic contributions Lan Cheng Department of Chemistry The Johns Hopkins University
2
Experimental studies of XeF6
Electron diffraction experiment (indicating two types of fluorine atoms) Infrared spectra recorded (indicating distortion from Oh structure) No rotational spectra observed Gavin, Bartell, J. Chem. Phys. 48, 2460 (1968); Bartell, Gavin, J. Chem. Phys. 48, 2466 (1968). Kim, Claassen, Pearson, Inorg. Chem. 7, 616 (1968). Falconer, Büchler, Stauffer, Klemperer, J. Chem. Phys. 48, 312 (1968).
3
Computational efforts
SCF calculation with polarization functions favor distorted geometry Relativistic and correlation effects favor the Oh conformer Both structures are local minima on the potential energy surface. Crawford, Springer, Schaefer, J. Chem. Phys. 102, 3307 (1994). Kaupp, van Wüllen, Franke, Schmitz, Kutzelnigg, J. Am. Chem. Soc. 118, (1996). Dixon, De Jong, Peterson, J. Am. Chem. Soc. 127, 8627 (2005). Cheng, Gauss, Stanton, J. Chem. Phys. 142, (2015).
4
Infrared Spectra of XeF6
IR spectrum of 0.3% isotopically pure XeF6 in Ne matrix (Gawrilow, Beckers, Riedel, Free University of Berlin)
5
Infrared Spectra of XeF6
XeOF4 IR spectrum of 0.3% isotopically pure XeF6 in Ne matrix (Gawrilow, Beckers, Riedel, Free University of Berlin)
6
Isotope shifts of harmonic frequencies
Mode 129XeF6 136XeF6 7 525 524 8 579 578 9 649 646 10 655 652
7
Isotope shifts of harmonic frequencies
Mode 129XeF6 136XeF6 7 525 524 8 579 578 9 649 646 10 655 652
8
Isotope shifts of harmonic frequencies
Mode 129XeF6 136XeF6 7 525 524 8 579 578 9 649 646 10 655 652
9
Isotope shifts of harmonic frequencies
Mode 129XeF6 136XeF6 7 525 524 8 579 578 9 649 646 10 655 652
10
Isotope shifts of harmonic frequencies
Mode 129XeF6 136XeF6 7 525 524 8 579 578 9 649 646 10 655 652
11
Anharmonic contributions
129XeF6 136XeF6 Mode Harmonic Freq (cm-1) Freq Intensity (km/mol) 1 70 7 525 524 8 579 578 9 649 646 10 655 651.6 1+8 648 Pronounced Fermi resonance for 129XeF6
12
Anharmonic contributions
129XeF6 136XeF6 Mode Harmonic Freq (cm-1) Freq Intensity (km/mol) 1 70 71 7 525 520 524 518 8 579 570 578 9 649 634 646 632 10 655 637 651.6 1+8 639 648 Pronounced Fermi resonance for 129XeF6
13
Anharmonic contributions
129XeF6 136XeF6 Mode Harmonic Freq (cm-1) Freq Intensity (km/mol) 1 70 71 7 525 520 273 524 518 281 8 579 570 64 578 67 9 649 634 306 646 632 389 10 655 637 134 651.6 125 1+8 639 55 648 13 Pronounced Fermi resonance for 129XeF6
14
Infrared Spectra of XeF6
Mode Freq (cm-1) Intensity (km/mol) 7 520 273 518 281 8 570 64 67 9 634 306 632 389 10 637 134 125
15
Infrared Spectra of XeF6
Mode 7 Xe-F asymmetric stretching 129XeF6 136XeF6 Mode Freq (cm-1) Intensity (km/mol) 7 520 273 518 281 8 570 64 67 9 634 306 632 389 10 637 134 125
16
Infrared Spectra of XeF6
Mode 8 Xe-F symmetric stretching mixed with umbrella mode 129XeF6 136XeF6 Mode Freq (cm-1) Intensity (km/mol) 7 520 273 518 281 8 570 64 67 9 634 306 632 389 10 637 134 125
17
Infrared Spectra of XeF6
Mode 9 Xe-F Asymmetric Stretching 129XeF6 136XeF6 Mode Freq (cm-1) Intensity (km/mol) 7 520 273 518 281 8 570 64 67 9 634 306 632 389 10 637 134 125
18
Outlook Further understanding of the potential energy surface for this molecule Transition state connecting C3v and Oh structures Accurate relative energies of local extrema
19
Acknowledgements Maxim Gawrilow Helmut Beckers Sebastian Riedel
Jaime Combariza Maryland Advanced Research Computing Center DOE
Similar presentations
© 2025 SlidePlayer.com. Inc.
All rights reserved.