Download presentation
Presentation is loading. Please wait.
Published bySarah Fisher Modified over 6 years ago
1
Optical Stark Spectroscopy and Hyperfine study of Gold Sulfide (AuS)
Ruohan Zhang, Damian Kokkin and Timothy C. Steimle International Symposium on Molecular Spectroscopy 70th Meeting (UIUC) June 22-26, 2015
2
Strong relativistic effect
Motivation: Gold chemistry Strong relativistic effect Previous spectroscopic studies on AuS(very few): Photoelectron Spectroscopy(AuS-): Prof. Lineberger’s group, J. Phys. Chem. A, 108, 11307(2004). Prof. L.-S. Wang’s group, J. Am. Chem. Soc., 130, 9156(2008). Prof. L.-S. Wang’s group, J. Phys. Chem. Lett., 6, 637(2015). Theoretical work: Z. J. Wu, J. Phys. Chem. A, 109, 5951(2005) DFT P. Schwerdtheger, J. Phys. Chem, 91, 1762(1989) Rel-HF E. Kraka et al, Croat. Chem. Acta, 82, 233(2009) DFT dipole moment Electronic Spectroscopy(our group): Low-resolution: Dr. Kokkin’s talk(TA02) High-resolution: rotational & hyperfine analysis, Stark & Zeeman effect
3
Introduction AuS molecular orbital(MO) diagram: Groud state:
(1s)2(1p)4(1d)4(2s)2(2p*)3 X2P Excited states: (1s)2(1p)4(1d)4(2s)1(2p*)4 A2S+ (1s)2(1p)4(1d)4(2s)2(2p*)2(3s*)1 a4S, B2S-, C2D, D2S Low resolution observation(at ASU & Macalester(Prof. Varberg)) C2D5/2-X2P3/2 C2D3/2-X2P3/2 Excitation spectra of AuS
4
Experimental approaches
High-resolution spectrometer Linewidth ~30MHz Stark plates Optical Stark Spectroscopy PMT Gated photon counter Laser induced fluorescence(LIF) Ablation laser(532nm) Pulse valve OCS in Argon Well collimated cold molecular beam, <15 K skimmer Au rod CW-dye laser Source chamber Detection chamber Diffusion pump II Diffusion pump I Background pressure (10-6 torr)
5
Observation – Field free
6
Observation: C2D3/2-X2P3/2 a b c d A B C D Conclusion: Small ground state hyperfine interaction.(Same as 2D5/2)
7
Observation a b c d A B C D Conclusion: 1. The hyperfine interaction are different between the two excited states. 2. No parity-dependent hyperfine interaction were observed.
8
Field Free Analysis: treat C2D5/2 and C2D3/2 separately
X2P3/2: No -dbl.; no hyperfine Heff= BJ2 C2D3/2 and C2D5/2 :No -dbl but hyperfine Heff= Tv’v’’ +BJ2 + Hmhf (Au) + Hquad(Au) The magnetic hyperfine Hamiltonian (not Λ-doubling dependent) One Ω component Frosch and Foley terms h3/2(2D)=2a−(1/2)(bF+2c/3), h5/2(2D)=2a+(1/2)(bF+2c/3)
9
Field Free Analysis: treat C2D5/2 and C2D3/2 separately (cont.)
nuclear-electric quadrupole interactions - 2 parameters: eq0Q and eq2Q Matrix representation Diagonalization Transition wavenumbers Energies Fitting procedure: C2D3/2 State 71 data Parameters of C2D3/2 Observed transitions 78 data Parameters of C2D5/2 C2D5/2 State
10
Results Fitted parameters (Unit: cm-1)
11
AuS Stark measurement(in progress)
Electric dipole moment(mel) Theoretical calculation: For ground state(X2P): mel1=4.69; mel2=2.63 Challenges: Complicate and congested hyperfine features; Numerous splitting features caused by higher F values; S/N get worse with increased electric field. P. Schwerdtheger et al, J. Phys. Chem, 91, 1762(1989) E. Kraka et al, Croat. Chem. Acta, 82, 233(2009)
12
Stark observation(in progress)
Lower J values, lower F values; Lower electric field; Repeat and co-add the scans. C2D3/2/2 complicated X2P3/2 F”=2 Q(3/2) F”=1 MF=F, F-1, …, -F+1, -F MJ=J, J-1, …, -J+1, -J
13
Conclusion and future work
The high-resolution spectra of the 2D3/2-X2P3/2 and 2D5/2-X2P3/2 transitions of AuS have been recorded by the first time. The spectroscopic parameters included the hyperfine parameters of the two states have been determined. The Stark effect was measured and will be analyzed to determine the electric dipole moment of AuS. The Zeeman effect of AuS will be determined in the future.
14
Acknowledgements Arizona State University Macalester College
Timothy C. Steimle Damian L. Kokkin Trung Nguyen Macalester College Thomas D. Varberg
15
Thank you!
Similar presentations
© 2025 SlidePlayer.com. Inc.
All rights reserved.