Download presentation
Presentation is loading. Please wait.
Published byGodfrey Beasley Modified over 6 years ago
1
Does the Brain Use Symbols or Distributed Representations?
James L. McClelland Department of Psychology and Center for Mind, Brain, and Computation Stanford University
2
Parallel Distributed Processing Approach to Semantic Cognition
Representation is a pattern of activation distributed over neurons within and across brain areas. Bidirectional propagation of activation underlies the ability to bring these representations to mind from given inputs. The knowledge underlying propagation of activation is in the connections. language
3
Development and Degeneration
Learned distributed representations in an appropriately structured distributed connectionist system underlies the development of conceptual knowledge. Gradual degradation of the representations constructed through this developmental process underlies the pattern of semantic disintegration seen in semantic dementia.
4
Differentiation, ‘Illusory Correlations’, and Overextension of Frequent Names in Development
6
The Rumelhart Model
7
The Training Data: All propositions true of items at the bottom level of the tree, e.g.: Robin can {grow, move, fly}
8
Target output for ‘robin can’ input
9
Forward Propagation of Activation
aj ai wij neti=Sajwij wki
10
Back Propagation of Error (d)
aj wij ai di ~ Sdkwki wki dk ~ (tk-ak) Error-correcting learning: At the output layer: Dwki = edkai At the prior layer: Dwij = edjaj …
13
Early Later Later Still E x p e r i e n c e
15
Why Does the Model Show Progressive Differentiation?
Learning in the model is sensitive to patterns of coherent covariation of properties Coherent Covariation: The tendency for properties of objects to co-vary in clusters
16
Patterns of Coherent Covariation in the Training Set
Patterns of coherent covariation are reflected in the principal components of the property covariance matrix of the training patterns. Figure shows attribute loadings on the first three principal components: 1. Plants vs. animals 2. Birds vs. fish 3. Trees vs. flowers Same color = features covary in component Diff color = anti-covarying features
17
Sensitivity to Coherence Requires Convergence
A A A
18
An Approximate Probabilistic Characterization of the Model: The Naïve Bayes Classifier Model
One-layer Naïve Bayes Classifier Model: P(a|i,{C}) = Skp(a|Ck)(p(Ck|i)) Mixture of Nested Bayes Classifiers: P(a|i,{D,S,B,I}) = aDP(a|i,D) + aSP(a|i,{S}) + aBP(a|i,{B}) + aIP(a|i,{I}) Alternative formulation under development: P(a|i,{D,S,B,I}) = aIP(a|i,{I}) + (1-aI)aBP(a|i,{B}) + (1-aB)aSP(a|i,{S}) + (1-aS)aDP(a|i,D)
19
A One-Class and a Two-Class Naïve Bayes Classifier Model
Property One-Class Model 1st class in two-class model 2nd class in two-class model Can Grow 1.0 Is Living Has Roots 0.5 Has Leaves 0.4375 0.875 Has Branches 0.25 Has Bark Has Petals Has Gills Has Scales Can Swim Can Fly Has Feathers Has Legs Has Skin Can See
20
Accounting for the network’s representations with classes at different levels of granularity
Living Thing Plant Tree Pine Bias Regression Beta Weight Epochs of Training
21
Illusory Correlations
Rochel Gelman found that children think that all animals have feet. Even animals that look like small furry balls and don’t seem to have any feet at all. A tendency to over-generalize properties typical of a superordinate category at an intermediate point in development is characteristic of the PDP network.
22
A typical property that a particular object lacks
e.g., pine has leaves An infrequent, atypical property
23
Overgeneralization of Frequent Names to Similar Objects
“tree” “goat” “dog”
24
Why Does Overgeneralization of Frequent Names Increase and then decrease?
In the simulation shown, dogs are experienced 10 times as much as any other animal, and there are 4 other mammals, 8 other animals, and ten plants. In a one-class model, goat is a living thing: P(name is ‘Dog’|living thing) = 10/32 = ~.3 In a two-class model, goat is an animal: P(name is ‘Dog’|animal) = 10/22 ~.5 In a five class model, goat is a mammal: P(name is ‘Dog’|mammal) = 10/15 = .67 In a 23 class model, goat is in a category by itself: P(name is ‘Dog’|goat) = 0
26
Development and Degeneration
Sensitivity to coherent covariation in an appropriately structured Parallel Distributed Processing system underlies the development of conceptual knowledge. Gradual degradation of the representations constructed through this developmental process underlies the pattern of semantic disintegration seen in semantic dementia.
27
Disintegration of Conceptual Knowledge in Semantic Dementia
Progressive loss of specific knowledge of concepts, including their names, with preservation of general information Overgeneralization of frequent names Illusory correlations
28
Picture naming and drawing in
Sem. Demantia
30
Inference and Generalization in the PDP Model
A semantic representation for a new item can be derived by error propagation from given information, using knowledge already stored in the weights. Crucially: The similarity structure, and hence the pattern of generalization depends on the knowledge already stored in the weights.
31
Start with a neutral representation on the representation units
Start with a neutral representation on the representation units. Use backprop to adjust the representation to minimize the error.
32
The result is a representation similar to that of the average bird…
33
Use the representation to infer what this new thing can do.
34
Proposed Architecture for the Organization of Semantic Memory
action name Medial Temporal Lobe motion Temporal pole color valance form
35
Conclusion Distributed representations gradually differentiate in ways that allow them to capture many phenomena in conceptual development. Their behavior is approximated by a blend of Naïve Bayes classifiers across several levels of granularity, with the blending weights shifting toward finer grain categories as learning progresses. Effects of damage are approximated by a reversal of this tendency: degraded representations retain the coarse-grained level knowledge but loose the finer-grained information. We are currently extending the models to address the sharing of knowledge across structurally related domains, I’ll be glad to discuss this idea in response to questions.
36
Rogers et al (2005) model of semantic dementia
name assoc function temporal pole vision
37
Errors in Naming for As a Function of Severity
Simulation Results Patient Data omissions within categ. superord. Severity of Dementia Fraction of Neurons Destroyed
38
Simulation of Delayed Copying
Visual input is presented, then removed. After several time steps, pattern is compared to the pattern that was presented initially. name assoc function temporal pole vision
39
Simulation results IF’s ‘camel’ DC’s ‘swan’ Omissions by feature type
Intrusions by feature type
40
Differential Importance (Marcario, 1991)
3-4 yr old children see a puppet and are told he likes to eat, or play with, a certain object (e.g., top object at right) Children then must choose another one that will “be the same kind of thing to eat” or that will be “the same kind of thing to play with”. In the first case they tend to choose the object with the same color. In the second case they will tend to choose the object with the same shape.
41
Adjustments to Training Environment
Among the plants: All trees are large All flowers are small Either can be bright or dull Among the animals: All birds are bright All fish are dull Either can be small or large In other words: Size covaries with properties that differentiate different types of plants Brightness covaries with properties that differentiate different types of animals
44
Similarities of Obtained Representations
Size is relevant for Plants Brightness is relevant for Animals
Similar presentations
© 2025 SlidePlayer.com. Inc.
All rights reserved.