Download presentation
Presentation is loading. Please wait.
Published byAdèle Laberge Modified over 6 years ago
1
MicroMegas DHCAL : Résultat des tests en faisceau et simulation
Catherine ADLOFF Laboratoire d’Annecy-le-Vieux de Physique des Particules Catherine Adloff Jan Blaha Sébastien Cap Maximilien Chefdeville Alexandre Dalmaz Cyril Drancourt Ambroise Espagilière Raphael Gallet Nicolas Geffroy Claude Girard Richard Hermel Kostas Karakostas (invité) Yannis Karyotakis Inocencio Monteiro Fabrice Peltier Julie Prast Jean Tassan Guillaume Vouters 09 Décembre 2008 SOCLE
2
Outline MicroMegas R&D for DHCAL Simulation Conclusion Why MicroMegas?
Analog Readout Long source run with 55Fe Test Beam Digital readout Simulation Conclusion 09 Décembre 2008 SOCLE
3
MicroMegas Micro mesh gaseous structure Description: Readout:
or pads Description: Gas mix: Argon+Isobutane Drift and Mesh HV < 500 V High detection rate Robust, cheap (industrial process) Thickness: 3,2 mm Delicate functioning: sparks Readout: Analog for characterisation GASSIPLEX + CENTAURE DAQ Digital HARDROC or DIRAC + Digital InterFace (DIF) board + EUDET DAQ2 or CrossDAQ cell = 1cm2 PCB pad Steel top is part of the absorber 12x32 cm pads 325 LPI mesh spacers : 120 m heigh m diameter Bulk technology from R. De Oliveira & O. Pizzirusso 09 Décembre 2008 SOCLE
4
X-ray Response Set-up: 55Fe source (5.9 keV) Trigger on mesh
analog readout FWHM (%) Mean (ADC Counts) VMesh (V) Gain : up to Energy resolution : down to 8.5 % (FWHM = 19.6)% VDrift = VMesh + 70 V EDrift = 233 V/cm K. Karakostas VMesh (V) VMesh = 420 V EMesh = 35 kV/cm VDrift = 470 V EDrift = 167 V/cm Entries ADC Counts escape peak A. Espargilière pedestal X-ray peak Slope = ADC/mbar = - 2 fC/mbar K. Karakostas Mean (ADC Counts) Pressure (mbar) 09 Décembre 2008 SOCLE
5
Test Beam 2008 From dream to reality
H2 line at SPS-CERN (August 2008) With the IRFU team (P. Colas, D. Attié, S. Turnbull) The data 200k 200 GeV 200k ~200 GeV 250k Pions with 1 steel block + absorbers T9 line at PS-CERN (November 2008 TB) The data 200k ~7 GeV Characterisation of the prototypes: efficiency and multiplicity pads / prototypes uniformity X-talk studies behaviour in hadronic shower A. Espargilière Preliminary Results 09 Décembre 2008 SOCLE
6
Test Beam Setup Trigger: 3 scintillators in coincidence
3 MicroMegas 6x16 pads 1 MicroMegas 12x32 pads Steel absorber option analog readout 09 Décembre 2008 SOCLE
7
Preliminary Results MIP Signal observed on every Single Channel MPV
E (ADC counts) MIP MPV ~ 45 fC E Nb of Events all triggers platinum events Pedestal: aligned online (0.2 fC RMS) constant over time average sigma = 0.6 fC Good noise conditions! MPV variation under study: Electronics channels disparity Drift space homogeneity Y (cm) X (cm) MPV HV Pad Normalised MPV Number of Pads 09 Décembre 2008 SOCLE
8
Preliminary Results Efficiency Measurements: Threshold :
gold events Efficiency Chamber 0 97,05 ± 0,07% Chamber 1 98,54 ± 0,05% Chamber 2 92,99 ± 0,10% Chamber 3 96,17 ± 0,07% Threshold : 2.8 fC = 0.06 MIP MPV x Y 09 Décembre 2008 SOCLE
9
Preliminary Results Multiplicity < 1.1 2 chambers
~ 75k gold events / chamber threshold : 2.8 fC = 0.06 MIP MPV gold events gold events 09 Décembre 2008 SOCLE
10
MicroMegas with Digital Readout
PCB with DIRAC1 64 channels ASIC (R. Gaglione, IPNL) 3 thresholds on 8 bits each, 8 events memory 2 Gains 6 fC to 200 fC or 100 fC to 10 pC Digital link to DAQ (possibility to chain detectors) Bulk from R. De Oliveira & O. Pizzirusso First operational Bulk MicroMegas with embedded readout electronics ! DIRAC Sparks protections mask for bulk laying 8x8 pads with bulk 09 Décembre 2008 SOCLE
11
MicroMegas with Digital Readout
Tested during the August 2008 TB Very promising results! Beam Profile when moving the X-Y table MicroMegas Lower Threshold = 19 fC ethernet readout Future test beam: Need a stack of chambers to check efficiencies 09 Décembre 2008 SOCLE
12
MicroMegas with Digital Readout
PCB with 4 HARDROC1 64 channels ASIC 3 layers of 8x32 cm2 HARDROC1 sparks protections Mesh side bulk 09 Décembre 2008 SOCLE
13
MicroMegas with Digital Readout
Tested during the November 2008 TB PCB with ASICs Readout : DIF board Separated from the slab For large number of ASICs HARDROC, DIRAC and also SPIROC and SKYROC DIF task force interface USB or DAQ2 Excellent work from Guillaume Vouters (DIF) and Christophe Combaret (CrossDaQ) Difficulties to get the bulk stable Data currently under study 09 Décembre 2008 SOCLE
14
Simulation (J. Blaha) Simulation tools
SLIC full simulation (Geant 4) Analysis using JAS3 2008 Test beam setup is being simulated Comparison with real data Better understanding of our detector Preparation for next test beam 200 GeV Pions Simulation Test beam 30 cm iron absorber in front 09 Décembre 2008 SOCLE
15
Simulation DHCAL with MicroMegas HCAL dimensions:
1m3 HCAL prototype (40 planes of 1m2, 4.5 I, 1m3) Large HCAL (80 planes of 2m2, 9 I, 8m3) 1.9 cm thick steel absorber Thickness of active layer: 6 mm 3 mm Gas: 95 % Argon + 5 % Isobutane 2.8 mm PCB + ASICs Different readout cell size: 0.5 x 0.5 cm2 1 x 1 cm2 2 x 2 cm2 4 x 4 cm2 09 Décembre 2008 SOCLE
16
8 m3 Energy spectrum: example 100 GeV pions
1 particle/pad Contribution normalised to 1 2 particles/pad # Pads 3 particles/pad # Pads 4 particles/pad 5 particles/pad 6 particles/pad Energy per Pad (GeV) Energy per Pad (GeV) Number of Particle contributing to a Hit (E > 0 GeV) 3 GeV 10 GeV 50 GeV 100 GeV Fraction of Pads Number of particles per pad 09 Décembre 2008 SOCLE
17
8 m3 Energy resolution : example 10 GeV pions Digital : Analog
Hit Threshold = 0 GeV Analog # Events # Events # Hits Energy (GeV) 09 Décembre 2008 SOCLE
18
From 8 m3 HCAL to 1 m3 Prototype
Analog Analog Digital Digital Hit Threshold = 0 GeV Hit Threshold = 0 GeV example : 10 GeV pions Digital Digital Hit Threshold = 1 MIP MPV Hit Threshold = MIP MPV 09 Décembre 2008 SOCLE
19
1 m3 Threshold studies : Correlation Digital : Digital : Digital :
Hit Threshold = 0 GeV Digital : Hit Threshold = 1 MIP MPV Digital : Hit Threshold = 4.5 MIP MPV # hits Energy (GeV) 09 Décembre 2008 SOCLE
20
1 m3 Threshold studies : Energy Resolution Analog : 0.054 + 58%/√E
Threshold (MIP MPV) E/E Pion Energy (GeV) E/E Analog : %/√E Digital : %/√E E 50 GeV 09 Décembre 2008 SOCLE
21
Conclusion MicroMegas R&D for DHCAL very active! Towards In parallel
ASIC developments Optimised prototypes, first digital readout prototypes Tests Beam: very promising results (still a lot to analyse) Future Test Beam in 2009 … Towards 1m2 prototype Calorimeter prototype of 1m3 In parallel Work on simulation of TB prototypes, future 1m3 and leakage less 8m3 Future : Different concept geometry, pads size… 09 Décembre 2008 SOCLE
22
HCAL Dimension Parameters
SiD Example Barrel Dimension (mm) End-Cap Inner Radius 1420 200 Outer Radius 2370 1410 Z length ± 2780 ± ± Absorber Thickness 18 Active Media Thickness < 8 Large active media surfaces (eg 1.8x3.5 m2) Total surface ~ 3000 m2 09 Décembre 2008 SOCLE
23
ILC: High Precision Measurements
Most widespread approach for calorimetry: Particle Flow Algorithms where jet resolution depends on cluster separation track-cluster matching HCAL choice of active media ANALOG HCAL: Scintillators+SiPM DIGITAL HCAL: Gaseous Detectors RPC or GEM or MicroMegas Imaging calorimeters: Compact showers High granularity 09 Décembre 2008 SOCLE
24
“semi-digital” (2bits) readout with 1cm2 cells
Analog or Digital? Hadronic energy resolution Jet energy resolution (perfect PFA) KEK for GLD H MATSUNAGA Pramana J. Phys., Vol 69, No 6, p dec 2007 Optimal for PFA: “semi-digital” (2bits) readout with 1cm2 cells 09 Décembre 2008 SOCLE
25
DHCAL: Gaseous Detectors
Performance studies MIP efficiency Hit multiplicity Ease of calibration (30 M cells 30 M elect. channels) Recovery time (RPC) Discharge rate (GEM, MicroMegas) Behaviour in hadronic shower Operating in high magnetic field Technological challenges Large surfaces Thickness < 8 mm Low cost and industrial process Aging: no performances degradation Uniformity /detector /cell 09 Décembre 2008 SOCLE
Similar presentations
© 2024 SlidePlayer.com. Inc.
All rights reserved.