Download presentation
Presentation is loading. Please wait.
Published byPatricia Hunter Modified over 6 years ago
1
Regression 1 Sociology 8811 Copyright © 2007 by Evan Schofer
Do not copy or distribute without permission
2
Announcements None!
3
Linear Functions Formula: Y = a + bX
Is a linear formula. If you graphed X and Y for any chosen values of a and b, you’d get a straight line. It is a family of functions: For any value of a and b, you get a particular line a is referred to as the “constant” or “intercept” b is referred to as the “slope” To graph a linear function: Pick values for X, compute corresponding values of Y Then, connect dots to graph line
4
Linear Functions: Y = a + bX
The “constant” or “intercept” (a) Determines where the line intersects the Y-axis If a increases (decreases), the line moves up (down) Y axis X axis 20 10 -10 -20 Y= X Y= X Y= X
5
Linear Functions: Y = a + bX
The slope (b) determines the steepness of the line Y=3+3X Y axis X axis 20 10 -10 -20 Y=3-1.5X Y=2+.2X
6
Linear Functions: Slopes
The slope (b) is the ratio of change in Y to change in X 20 10 -10 -20 Y=3+3X Slope: b = 15/5 = 3 Change in Y=15 Change in X =5 The slope tells you how many points Y will increase for any single point increase in X
7
Linear Functions as Summaries
A linear function can be used to summarize the relationship between two variables: Slope: b = 2 / 40,000 = pts/$ Change in X = 40,000 Change in Y = 2 If you change units: b = .05 / $1K b = .5 pts/$10K b = 5 pts/$100K
8
Linear Functions as Summaries
Slope and constant can be “eyeballed” to approximate a formula: Happy = Income Slope (b): b = 2 / 40,000 = pts/$ Constant (a) = Value where line hits Y axis a = 2
9
Linear Functions as Summaries
Linear functions can powerfully summarize data: Formula: Happy = Income Gives a sense of how the two variables are related Namely, people get a increase in happiness for every extra dollar of income (or 5 pts per $100K) Also lets you “predict” values. What if someone earns $150,000? Happy = ($150,000) = 9.5 But be careful… You shouldn’t assume that a relationship remains linear indefinitely Also, negative income or happiness make no sense…
10
Linear Functions as Summaries
Come up with a linear function that summarizes this real data: years of education vs. job prestige It isn’t always easy! The line you choose depends on how much you “weight” these points.
11
Linear Functions as Summaries
One estimate of the linear function The line meets the Y-axis at Y=5. Thus a = 5 The line increases to about 65 as X reaches 20. The increase is 60 in Y per 20 in X. Thus: b = 60/20 = 3 Formula: Y = X
12
Linear Functions as Summaries
Questions: How much additional job prestige do you get by going to college (an extra 4 years of education)? Formula: Prestige = 5 + 3*Education Answer: About 12 points of job prestige Change in X is 4… Slope is x 4 = 12 points If X=12, Y=5+3*12 = 41; If X=16, Y=5+3*16 = 53 What is the interpretation of the constant? It is the predicted job prestige of someone with zero years of education… (Prestige = 5)
13
Linear Functions as Prediction
Linear functions can summarize the relationship between two variables: Formula: Happy = Income (in 1,000s) Linear functions can also be used to “predict” (estimate) a case’s value of variable (Yi) based on its value of another variable (Xi) If you know the constant and slope “Y-hat” indicates an estimation function: bYX denotes the slope of Y with respect to X
14
Prediction with Linear Functions
If Xi (Income) = 60K, what is our estimate of Yi (Happiness)? Happy = Income Happiness-hat = (60) = 5 There is an case with Income =60K The prediction in imperfect… The case falls at X = 5.3 (above the line).
15
The Linear Regression Model
To model real data, we must take into account that points will miss the line Similar to ANOVA, we refer to the deviation of points from the estimated value as “error” (ei) In ANOVA the estimated value is: the group mean i.e., the grand mean plus the group effect In regression the estimated value is derived from the formula Y = a + bX Estimation is based on the value of X, slope, and constant (assumes linear relationship between X and Y)
16
The Linear Regression Model
The value of any point (Yi) can be modeled as: The value of Y for case (i) is made up of A constant (a) A sloping function of the case’s value on variable X (bYX) An error term (e), the deviation from the line By adding error (e), an abstract mathematical function can be applied to real data points
17
The Linear Regression Model
Case 7: X=3, Y=5 Visually: Yi = a + bXi + ei e = 1.5 Y=2+.5X 4 2 -2 -4 bX = 3(.5) = 1.5 Constant (a) = 2 a = 2
18
Estimating Linear Equations
Question: How do we choose the best line to describe our real data? Previously, we just “eyeballed” it Answer: Look at the error If a given line formula misses points by a lot, the observed error will be large If the line is as close to all points as possible, observed error will be small Of course, even the best line has some error Except when all data points are perfectly on a line
19
Estimating Linear Equations
A poor estimation (big error) Y=1.5-1X 4 2 -2 -4
20
Estimating Linear Equations
Better estimation (less error) Y=2+.5X 4 2 -2 -4
21
Estimating Linear Equations
Look at the improvement (reduction) in error: High Error vs Low Error
22
Estimating Linear Equations
Idea: The “best” line is the one that has the least error (deviation from the line) Total deviation from the line can be expressed as: But, to make all deviation positive, we square it, producing the “sum of squares error”
23
Estimating Linear Equations
Goal: Find values of constant (a) and slope (b) that produce the lowest squared error The “least squares” regression line The formula for the slope (b) that yields the “least squares error” is: Where s2x is the variance of X And sYX is the covariance of Y and X.
24
Covariance Variance: Sum of deviation about Y-bar over N-1
Covariance (sYX): Sum of deviation about Y-bar multiplied by deviation around X-bar:
25
Covariance Covariance: A measure of how much variance of a case in X is accompanied by variance in Y It measures whether deviation (from mean) in X tends to be accompanied by similar deviation in Y Or if cases with positive deviation in X have negative deviation in Y This is summed up for all cases in the data The covariance is one numerical measure that characterizes the extent of linear association As is the correlation coefficient (r).
26
Regression Example Example: Study time and student achievement.
X variable: Average # hours spent studying per day Y variable: Score on reading test Y axis X axis 30 20 10 X-bar = 1.8 Case X Y 1 2.6 28 2 1.4 13 3 .65 17 4 4.1 31 5 .25 8 6 1.9 16 Y-bar = 18.8
27
Sum of X deviation * Y deviation = 51.73
Regression Example Slope = covariance (X and Y) / variance of X X-bar = 1.8, Y-bar = 18.8 Case X Y 1 2.6 28 2 1.4 13 3 .65 17 4 4.1 31 5 .25 8 6 1.9 16 X Dev 0.8 -0.4 1.15 2.3 -1.55 0.1 Y Dev 9.2 -5.8 -1.8 12.2 -10.8 -2.8 XD*YD 7.36 1.92 -2.07 28.06 16.74 -.28 Sum of X deviation * Y deviation = 51.73
28
Regression Example Calculating the Covariance:
Standard deviation of X = 1.4 Variance = square of S.D. = 1.96 Finally:
29
Regression Example Results: Slope b = 5.3, constant a = 9.3
Equation: TestScore = *HrsStudied Question: What is the interpretation of b? Answer: For every hour studied, test scores increase by 5.3 points Question: What is the interpretation of the constant? Answer: Individuals who studied zero hours are predicted to score 9.3 on a the test.
30
Computing Regressions
Regression coefficients can be calculated in SPSS You will rarely, if ever, do them by hand SPSS will estimate: The value of the constant (a) The value of the slope (b) Plus, a large number of related statistics and results of hypothesis testing procedures
31
Example: Education & Job Prestige
Example: Years of Education versus Job Prestige Previously, we made an “eyeball” estimate of the line Our estimate: Y = 5 + 3X
32
Example: Education & Job Prestige
The actual SPSS regression results for that data: Estimates of a and b: “Constant” = a = Slope for “Year of School” = b = 2.487 Equation: Prestige = Education A year of education adds 2.5 points job prestige
33
Example: Education & Job Prestige
Comparing our “eyeball” estimate to the actual OLS regression line Our estimate: Y = 5 + 3X Actual OLS regression line computed in SPSS
34
R-Square The R-Square statistic indicates how well the regression line “explains” variation in Y It is based on partitioning variance into: 1. Explained (“regression”) variance The portion of deviation from Y-bar accounted for by the regression line 2. Unexplained (“error”) variance The portion of deviation from Y-bar that is “error” Formula:
35
R-Square Visually: Deviation is partitioned into two parts Y=2+.5X
“Error Variance” Y=2+.5X 4 2 -2 -4 “Explained Variance” Y-bar
36
Example: Education & Job Prestige
R-Square & Hypothesis testing information: The R and R-Square indicate how well the line summarizes the data This information allows us to do hypothesis tests about constant & slope
37
Hypothesis Tests: Slopes
Given: Observed slope relating Education to Job Prestige = 2.47 Question: Can we generalize this to the population of all Americans? How likely is it that this observed slope was actually drawn from a population with slope = 0? Solution: Conduct a hypothesis test Notation: slope = b, population slope = b H0: Population slope b = 0 H1: Population slope b 0 (two-tailed test)
38
Example: Slope Hypothesis Test
The actual SPSS regression results for that data: t-value and “sig” (p-value) are for hypothesis tests about the slope Reject H0 if: T-value > critical t (N-2 df) Or, “sig.” (p-value) less than a (often a = .05)
39
Hypothesis Tests: Slopes
What information lets us to do a hypothesis test? Answer: Estimates of a slope (b) have a sampling distribution, like any other statistic It is the distribution of every value of the slope, based on all possible samples (of size N) If certain assumptions are met, the sampling distribution approximates the t-distribution Thus, we can assess the probability that a given value of b would be observed, if b = 0 If probability is low – below alpha – we reject H0
40
Hypothesis Tests: Slopes
Visually: If the population slope (b) is zero, then the sampling distribution would center at zero Since the sampling distribution is a probability distribution, we can identify the likely values of b if the population slope is zero If b=0, observed slopes should commonly fall near zero, too b Sampling distribution of the slope If observed slope falls very far from 0, it is improbable that b is really equal to zero. Thus, we can reject H0.
41
Regression Assumptions
Assumptions of simple (bivariate) regression If assumptions aren’t met, hypothesis tests may be inaccurate 1. Random sample w/ sufficient N (N > ~20) 2. Linear relationship among variables Check scatterplot for non-linear pattern; (a “cloud” is OK) 3. Conditional normality: Y = normal at all values of X Check histograms of Y for normality at several values of X 4. Homoskedasticity – equal error variance at all values of X Check scatterplot for “bulges” or “fanning out” of error across values of X Additional assumptions are required for multivariate regression…
42
Bivariate Regression Assumptions
Normality: Examine sub-samples at different values of X. Make histograms and check for normality. Good Not very good
43
Bivariate Regression Assumptions
Homoskedasticity: Equal Error Variance Examine error at different values of X. Is it roughly equal? Here, things look pretty good.
44
Bivariate Regression Assumptions
Heteroskedasticity: Unequal Error Variance At higher values of X, error variance increases a lot. This looks pretty bad.
45
Regression Hypothesis Tests
If assumptions are met, the sampling distribution of the slope (b) approximates a T-distribution Standard deviation of the sampling distribution is called the standard error of the slope (sb) Population formula of standard error: Where se2 is the variance of the regression error
46
Regression Hypothesis Tests
Estimating se2 lets us estimate the standard error: Now we can estimate the S.E. of the slope:
47
Regression Hypothesis Tests
Finally: A t-value can be calculated: It is the slope divided by the standard error Where sb is the sample point estimate of the S.E. The t-value is based on N-2 degrees of freedom Reject H0 if observed t > critical t (e.g., 1.96).
48
Example: Education & Job Prestige
T-values can be compared to critical t... SPSS estimates the standard error of the slope. This is used to calculate a t-value The t-value can be compared to the “critical value” to test hypotheses. Or, just compare “Sig.” to alpha. If t > crit or Sig < alpha, reject H0
Similar presentations
© 2024 SlidePlayer.com. Inc.
All rights reserved.