Presentation is loading. Please wait.

Presentation is loading. Please wait.

Mrs. Rivas

Similar presentations


Presentation on theme: "Mrs. Rivas "— Presentation transcript:

1 Mrs. Rivas 𝒎= 𝒚 𝟐 − 𝒚 𝟏 𝒙 𝟐 − 𝒙 𝟏 = 𝟖−𝟎 −𝟔−𝟐 = 𝟖 −𝟖 =−𝟏
Find the slope of the line passing through the given points. 1. (2, 0), (6, 8) 𝒎= 𝒚 𝟐 − 𝒚 𝟏 𝒙 𝟐 − 𝒙 𝟏 = 𝟖−𝟎 −𝟔−𝟐 = 𝟖 −𝟖 =−𝟏

2 Mrs. Rivas 𝒎= 𝒚 𝟐 − 𝒚 𝟏 𝒙 𝟐 − 𝒙 𝟏 = −𝟑−𝟏 −𝟗−𝟗 = −𝟒 −𝟏𝟖 = 𝟐 𝟗
Find the slope of the line passing through the given points. 2. (9, 1), (9, 3) 𝒎= 𝒚 𝟐 − 𝒚 𝟏 𝒙 𝟐 − 𝒙 𝟏 = −𝟑−𝟏 −𝟗−𝟗 = −𝟒 −𝟏𝟖 = 𝟐 𝟗

3 Mrs. Rivas 𝒎= 𝒚 𝟐 − 𝒚 𝟏 𝒙 𝟐 − 𝒙 𝟏 = 𝟖−(−𝟏) 𝟐−(−𝟑) = 𝟖+𝟏 𝟐+𝟑 = 𝟗 𝟓
Find the slope of the line passing through the given points. 3. (3, 1), (2, 8) 𝒎= 𝒚 𝟐 − 𝒚 𝟏 𝒙 𝟐 − 𝒙 𝟏 = 𝟖−(−𝟏) 𝟐−(−𝟑) = 𝟖+𝟏 𝟐+𝟑 = 𝟗 𝟓

4 Mrs. Rivas Find the slope of the line passing through the given points. 4. = 𝟕 𝟔

5 Mrs. Rivas Find the slope of the line passing through the given points. 5. =− 𝟒 𝟑

6 Mrs. Rivas 6. 𝑦 = 𝑥 − 4 𝟏 𝟏 𝒚=𝒎𝒙+𝒃 Graph each line. Starting point
(0,-4) 𝟏 𝟏

7 Mrs. Rivas 7. 𝑦 = 2𝑥 + 3 𝟐 𝟏 𝒚=𝒎𝒙+𝒃 Graph each line. Starting point
(0,3)

8 Mrs. Rivas 8. 𝑦 = 1 4 𝑥 𝟏 𝟒 𝒚=𝒎𝒙+𝒃 Graph each line. Starting point
8. 𝑦 = 1 4 𝑥 Starting point (0,0) 𝟏 𝟒

9 Mrs. Rivas 9. 𝑦 =− 3 4 𝑥−1 − 𝟑 𝟒 𝒚=𝒎𝒙+𝒃 Graph each line.
Starting point (0,-1) − 𝟑 𝟒

10 Mrs. Rivas Use the given information to write an equation of each line. 10. slope 𝟏 𝟑 𝑦-intercept 𝟔 𝒚=𝒎𝒙+𝒃 𝒚= 𝟏 𝟑 𝒙+𝟔

11 Mrs. Rivas Use the given information to write an equation of each line. 11. slope −𝟏𝟎 𝑦-intercept −𝟑 𝒚=𝒎𝒙+𝒃 𝒚=−𝟏𝟎𝒙−𝟑

12 Mrs. Rivas 𝒚− 𝒚 𝟏 =𝒎(𝒙− 𝒙 𝟏 ) 𝒚− −𝟑 =−𝟓(𝒙−𝟐) 𝒚+𝟑=−𝟓(𝒙−𝟐) 𝒚+𝟑=−𝟓𝒙+𝟏𝟎
Use the given information to write an equation of each line. 12. slope 5, passes through (2, 3) 𝒚− 𝒚 𝟏 =𝒎(𝒙− 𝒙 𝟏 ) 𝒚− −𝟑 =−𝟓(𝒙−𝟐) 𝒚+𝟑=−𝟓(𝒙−𝟐) 𝒚+𝟑=−𝟓𝒙+𝟏𝟎 𝒚=−𝟓𝒙+𝟕

13 Mrs. Rivas 𝒚− 𝒚 𝟏 =𝒎(𝒙− 𝒙 𝟏 ) 𝒚−𝟐= 𝟑 𝟒 (𝒙−(−𝟖)) 𝒚−𝟐= 𝟑 𝟒 𝒙+𝟔
Use the given information to write an equation of each line. 13. Slope 𝟑 𝟒 , passes through (8, 2) 𝒚− 𝒚 𝟏 =𝒎(𝒙− 𝒙 𝟏 ) 𝒚−𝟐= 𝟑 𝟒 (𝒙−(−𝟖)) 𝒚−𝟐= 𝟑 𝟒 𝒙+𝟔 𝒚= 𝟑 𝟒 𝒙+𝟖

14 Mrs. Rivas 𝒎= 𝒚 𝟐 − 𝒚 𝟏 𝒙 𝟐 − 𝒙 𝟏 𝒚− 𝒚 𝟏 =𝒎(𝒙− 𝒙 𝟏 ) 𝒚−𝟔=−𝟐(𝒙−𝟎)
Use the given information to write an equation of each line. 14. passes through (0, 6) and (4, 2) 𝒎= 𝒚 𝟐 − 𝒚 𝟏 𝒙 𝟐 − 𝒙 𝟏 𝒚− 𝒚 𝟏 =𝒎(𝒙− 𝒙 𝟏 ) 𝒚−𝟔=−𝟐(𝒙−𝟎) = −𝟐−𝟔 𝟒−𝟎 𝒚−𝟔=−𝟐𝒙+𝟎 𝒚=−𝟐𝒙+𝟔 = −𝟖 𝟒 =−𝟐

15 Mrs. Rivas 𝒎= 𝒚 𝟐 − 𝒚 𝟏 𝒙 𝟐 − 𝒙 𝟏 𝒚− 𝒚 𝟏 =𝒎(𝒙− 𝒙 𝟏 ) 𝒚−𝟖=−𝟐(𝒙−(−𝟏))
Use the given information to write an equation of each line. 15. passes through (1, 8) and (5, 4) 𝒎= 𝒚 𝟐 − 𝒚 𝟏 𝒙 𝟐 − 𝒙 𝟏 𝒚− 𝒚 𝟏 =𝒎(𝒙− 𝒙 𝟏 ) 𝒚−𝟖=−𝟐(𝒙−(−𝟏)) = −𝟒−𝟖 𝟓−(−𝟏) 𝒚−𝟖=−𝟐(𝒙+𝟏) 𝒚−𝟖=−𝟐𝒙−𝟐 = −𝟏𝟐 𝟔 𝒚=−𝟐𝒙+𝟔 =−𝟐

16 Mrs. Rivas 𝑯𝒐𝒓𝒊𝒛𝒐𝒏𝒕𝒂𝒍 𝑳𝒊𝒏𝒆:𝒚=𝟔 𝑽𝒆𝒓𝒕𝒊𝒄𝒂𝒍 𝑳𝒊𝒏𝒆:𝒙=𝟓 16. (5, 6)
Write the equations of the horizontal and vertical lines through the given point. 16. (5, 6) 𝑯𝒐𝒓𝒊𝒛𝒐𝒏𝒕𝒂𝒍 𝑳𝒊𝒏𝒆:𝒚=𝟔 𝑽𝒆𝒓𝒕𝒊𝒄𝒂𝒍 𝑳𝒊𝒏𝒆:𝒙=𝟓

17 Mrs. Rivas 𝑯𝒐𝒓𝒊𝒛𝒐𝒏𝒕𝒂𝒍 𝑳𝒊𝒏𝒆:𝒚=−𝟑 𝑽𝒆𝒓𝒕𝒊𝒄𝒂𝒍 𝑳𝒊𝒏𝒆:𝒙=−𝟐 17. (2, 3)
Write the equations of the horizontal and vertical lines through the given point. 17. (2, 3) 𝑯𝒐𝒓𝒊𝒛𝒐𝒏𝒕𝒂𝒍 𝑳𝒊𝒏𝒆:𝒚=−𝟑 𝑽𝒆𝒓𝒕𝒊𝒄𝒂𝒍 𝑳𝒊𝒏𝒆:𝒙=−𝟐

18 Mrs. Rivas 𝑯𝒐𝒓𝒊𝒛𝒐𝒏𝒕𝒂𝒍 𝑳𝒊𝒏𝒆:𝒚=−𝟏 𝑽𝒆𝒓𝒕𝒊𝒄𝒂𝒍 𝑳𝒊𝒏𝒆:𝒙=𝟖 18. (8, 1)
Write the equations of the horizontal and vertical lines through the given point. 18. (8, 1) 𝑯𝒐𝒓𝒊𝒛𝒐𝒏𝒕𝒂𝒍 𝑳𝒊𝒏𝒆:𝒚=−𝟏 𝑽𝒆𝒓𝒕𝒊𝒄𝒂𝒍 𝑳𝒊𝒏𝒆:𝒙=𝟖

19 Mrs. Rivas 𝑯𝒐𝒓𝒊𝒛𝒐𝒏𝒕𝒂𝒍 𝑳𝒊𝒏𝒆:𝒚=𝟎 𝑽𝒆𝒓𝒕𝒊𝒄𝒂𝒍 𝑳𝒊𝒏𝒆:𝒙=𝟏𝟎 19. (10, 0)
Write the equations of the horizontal and vertical lines through the given point. 19. (10, 0) 𝑯𝒐𝒓𝒊𝒛𝒐𝒏𝒕𝒂𝒍 𝑳𝒊𝒏𝒆:𝒚=𝟎 𝑽𝒆𝒓𝒕𝒊𝒄𝒂𝒍 𝑳𝒊𝒏𝒆:𝒙=𝟏𝟎

20 Mrs. Rivas 𝒚−𝟓=𝟑(𝒙−𝟒) 𝒚−𝟓=𝟑𝒙−𝟏𝟐 𝒚=𝟑𝒙−𝟕 𝒚=𝒎𝒙+𝒃 20. 𝑦 − 5 = 3(𝑥 − 4)
Write each equation in slope-intercept form. 20. 𝑦 − 5 = 3(𝑥 − 4) 𝒚−𝟓=𝟑(𝒙−𝟒) 𝒚−𝟓=𝟑𝒙−𝟏𝟐 𝒚=𝟑𝒙−𝟕

21 Mrs. Rivas 𝒚+𝟐=−𝟓(𝒙−𝟏) 𝒚+𝟐=−𝟓𝒙+𝟓 𝒚=−𝟓𝒙+𝟑 𝒚=𝒎𝒙+𝒃 21. 𝑦 + 2 =−5(𝑥 − 1)
Write each equation in slope-intercept form. 21. 𝑦 + 2 =−5(𝑥 − 1) 𝒚+𝟐=−𝟓(𝒙−𝟏) 𝒚+𝟐=−𝟓𝒙+𝟓 𝒚=−𝟓𝒙+𝟑

22 Mrs. Rivas 𝟐𝒙+𝟒𝒚=𝟖 −𝟐𝒙 −𝟐𝒙 𝟒𝒚=−𝟐𝒙+𝟖 𝟒 𝟒 𝟒 𝒚=− 𝟏 𝟐 𝒙+𝟐 𝒚=𝒎𝒙+𝒃
Write each equation in slope-intercept form. 𝒚=𝒎𝒙+𝒃 22. 2𝑥 + 4𝑦 = 8 𝟐𝒙+𝟒𝒚=𝟖 −𝟐𝒙 −𝟐𝒙 𝟒𝒚=−𝟐𝒙+𝟖 𝟒 𝟒 𝟒 𝒚=− 𝟏 𝟐 𝒙+𝟐

23 Mrs. Rivas 𝟏𝟎𝒚+𝟏𝟔𝒙+𝟒=𝟐𝒚 −𝟏𝟎𝒚 −𝟏𝟎𝒚 𝟏𝟔𝒙+𝟒=−𝟖𝒚 −𝟖 −𝟖 −𝟖 𝒚=−𝟐𝒙− 𝟏 𝟐 𝒚=𝒎𝒙+𝒃
Write each equation in slope-intercept form. 23. 10𝑦 + 16𝑥 + 4 = 2𝑦 𝟏𝟎𝒚+𝟏𝟔𝒙+𝟒=𝟐𝒚 −𝟏𝟎𝒚 −𝟏𝟎𝒚 𝟏𝟔𝒙+𝟒=−𝟖𝒚 −𝟖 −𝟖 −𝟖 𝒚=−𝟐𝒙− 𝟏 𝟐

24 Mrs. Rivas 𝒚− 𝒚 𝟏 =𝒎(𝒙− 𝒙 𝟏 ) 𝒎= 𝒚 𝟐 − 𝒚 𝟏 𝒙 𝟐 − 𝒙 𝟏 𝒚−𝟏=𝟏(𝒙−(−𝟏))
24.Coordinate Geometry The vertices of a quadrilateral are 𝐴(−1, 1), 𝐵(2, 4), 𝐶(2, −4), and 𝐷(0, −2). a. Write an equation for the line through A and B. 𝒎= 𝒚 𝟐 − 𝒚 𝟏 𝒙 𝟐 − 𝒙 𝟏 𝒚− 𝒚 𝟏 =𝒎(𝒙− 𝒙 𝟏 ) 𝒚−𝟏=𝟏(𝒙−(−𝟏)) = 𝟒−𝟏 𝟐−(−𝟏) 𝒚−𝟏=𝟏(𝒙+𝟏) 𝒚−𝟏=𝒙+𝟏 = 𝟒−𝟏 𝟐+𝟏 𝒚=𝒙+𝟐 = 3 3 =𝟏

25 Mrs. Rivas 𝒚− 𝒚 𝟏 =𝒎(𝒙− 𝒙 𝟏 ) 𝒎= 𝒚 𝟐 − 𝒚 𝟏 𝒙 𝟐 − 𝒙 𝟏 𝒚− −𝟒 =−𝟏(𝒙−𝟐)
24.Coordinate Geometry The vertices of a quadrilateral are 𝐴(−1, 1), 𝐵(2, 4), 𝐶(2, −4), and 𝐷(0, −2). b. Write an equation for the line through C and D. 𝒎= 𝒚 𝟐 − 𝒚 𝟏 𝒙 𝟐 − 𝒙 𝟏 𝒚− 𝒚 𝟏 =𝒎(𝒙− 𝒙 𝟏 ) 𝒚− −𝟒 =−𝟏(𝒙−𝟐) = −𝟐−(−𝟒) 𝟎−𝟐 𝒚+𝟒=−(𝒙−𝟐) 𝒚+𝟒=−𝒙+𝟐 = 𝟐 −𝟐 𝒚=−𝒙−𝟐 =−𝟏

26 Mrs. Rivas 24.Coordinate Geometry The vertices of a quadrilateral are 𝐴(−1, 1), 𝐵(2, 4), 𝐶(2, −4), and 𝐷(0, −2). c. Without graphing the lines, what can you tell about the lines from their slopes? 𝒚=𝒙+𝟐 𝒚=−𝒙−𝟐 One line has a positive slope and the other has a negative slope. We can also say that they are perpendicular since their slopes are opposite reciprocal.

27 Mrs. Rivas For Exercises 25 and 26, are lines ℓ 𝟏 and ℓ 𝟐 parallel? Explain. 25. 𝒎= 𝒚 𝟐 − 𝒚 𝟏 𝒙 𝟐 − 𝒙 𝟏 ℓ 𝟏 = 𝟐−𝟎 𝟑−(−𝟑) ℓ 𝟐 = −𝟏−(−𝟑) 𝟓−(−𝟏) = 𝟐 𝟔 = 𝟐 𝟔 = 𝟏 𝟑 = 𝟏 𝟑 Yes, the lines are parallel because the have the same slopes.

28 Mrs. Rivas 𝒎= 𝒚 𝟐 − 𝒚 𝟏 𝒙 𝟐 − 𝒙 𝟏 = −𝟗 𝟐 =−𝟒 =− 𝟗 𝟐
For Exercises 25 and 26, are lines ℓ 𝟏 and ℓ 𝟐 parallel? Explain. 26. 𝒎= 𝒚 𝟐 − 𝒚 𝟏 𝒙 𝟐 − 𝒙 𝟏 ℓ 𝟏 = −𝟑−𝟔 −𝟏−(−𝟑) ℓ 𝟐 = 𝟎−𝟖 𝟔−𝟒 = −𝟗 𝟐 = −𝟖 𝟐 =−𝟒 =− 𝟗 𝟐 No, the lines are NOT parallel because the don’t have the same slopes.

29 Mrs. Rivas 𝒚− 𝒚 𝟏 =𝒎(𝒙− 𝒙 𝟏 ) 𝒚−(−𝟐)=−𝟓(𝒙−𝟓) 𝒚+𝟐=−𝟓(𝒙−𝟓) 𝒚+𝟐=−𝟓𝒙+𝟐𝟓
Write an equation of the line parallel to the given line that contains 𝑪. 27. 𝐶 5,−2 ; 𝑦 =−5𝑥 + 3 “Same Slope” 𝒎 =−𝟓 𝒚− 𝒚 𝟏 =𝒎(𝒙− 𝒙 𝟏 ) 𝒚−(−𝟐)=−𝟓(𝒙−𝟓) Use the distributive property 𝒚+𝟐=−𝟓(𝒙−𝟓) 𝒚+𝟐=−𝟓𝒙+𝟐𝟓 Solve for y: 𝒚=−𝟓𝒙+𝟐𝟑

30 Mrs. Rivas 𝒚− 𝒚 𝟏 =𝒎(𝒙− 𝒙 𝟏 ) 𝒚−𝟏=𝟐(𝒙−𝟖) 𝒚−𝟏=𝟐𝒙−𝟏𝟔 𝒚=𝟐𝒙−𝟏𝟓
Write an equation of the line parallel to the given line that contains 𝑪. 28. 𝐶(8, 1); 𝑦 = 2𝑥 + 6 “Same Slope” 𝒎 =𝟐 𝒚− 𝒚 𝟏 =𝒎(𝒙− 𝒙 𝟏 ) 𝒚−𝟏=𝟐(𝒙−𝟖) Use the distributive property 𝒚−𝟏=𝟐𝒙−𝟏𝟔 Solve for y: 𝒚=𝟐𝒙−𝟏𝟓

31 Mrs. Rivas 𝒚− 𝒚 𝟏 =𝒎(𝒙− 𝒙 𝟏 ) 𝒚−𝟔= 𝟐 𝟑 (𝒙−𝟎) 𝒚−𝟔= 𝟐 𝟑 𝒙−𝟎 𝒚= 𝟐 𝟑 𝒙+𝟔
Write an equation of the line parallel to the given line that contains 𝑪. 29. 𝐶(0, 6); 𝑦 = 2 3 𝑥 +3 “Same Slope” 𝒚− 𝒚 𝟏 =𝒎(𝒙− 𝒙 𝟏 ) 𝒎 = 𝟐 𝟑 𝒚−𝟔= 𝟐 𝟑 (𝒙−𝟎) Use the distributive property 𝒚−𝟔= 𝟐 𝟑 𝒙−𝟎 Solve for y: 𝒚= 𝟐 𝟑 𝒙+𝟔

32 Mrs. Rivas 𝟐𝒚+𝟔𝒙=𝟏𝟖 𝟒𝒚+𝟏𝟐𝒙=𝟐𝟒 −𝟔𝒙 −𝟔𝒙 −𝟏𝟐𝒙 −𝟏𝟐𝒙 𝟐𝒚=−𝟔𝒙+𝟏𝟖 𝟒𝒚=−𝟏𝟐𝒙+𝟐𝟒 𝟐
𝒚=𝒎𝒙+𝒃 Rewrite each equation in slope-intercept form, if necessary. Then determine whether the lines are parallel. Explain. 30. 2𝑦 + 6𝑥 = 18 4𝑦+12𝑥=24 𝟐𝒚+𝟔𝒙=𝟏𝟖 𝟒𝒚+𝟏𝟐𝒙=𝟐𝟒 −𝟔𝒙 −𝟔𝒙 −𝟏𝟐𝒙 −𝟏𝟐𝒙 𝟐𝒚=−𝟔𝒙+𝟏𝟖 𝟒𝒚=−𝟏𝟐𝒙+𝟐𝟒 𝟐 𝟐 𝟐 𝟒 𝟒 𝟒 𝒚=−𝟑𝒙+𝟗 𝒚=−𝟑𝒙+𝟔 Yes, the lines are parallel because the have the same slopes.

33 Mrs. Rivas 𝒙−𝟐𝒚=𝟒 𝒚=𝒙+𝟖 −𝒙 −𝒙 −𝟐𝒚=−𝒙+𝟒 −𝟐 −𝟐 −𝟐 𝒚=− 𝟏 𝟐 𝒙−𝟐
𝒚=𝒎𝒙+𝒃 Rewrite each equation in slope-intercept form, if necessary. Then determine whether the lines are parallel. Explain. 31. 𝑦=𝑥+8 𝑥−2𝑦=4 𝒙−𝟐𝒚=𝟒 𝒚=𝒙+𝟖 −𝒙 −𝒙 −𝟐𝒚=−𝒙+𝟒 −𝟐 −𝟐 −𝟐 𝒚=− 𝟏 𝟐 𝒙−𝟐 No, the lines are NOT parallel because the don’t have the same slopes.

34 Mrs. Rivas 𝟐𝒚= 𝟑 𝟐 𝒙+𝟒 𝟒𝒚−𝟑𝒙=𝟐𝟎 𝟐 𝟐 +𝟑𝒙 +𝟑𝒙 𝟐 𝟒𝒚=𝟑𝒙+𝟐𝟎 𝟒 𝟒 𝟒
Rewrite each equation in slope-intercept form, if necessary. Then determine whether the lines are parallel. Explain. 32. 4𝑦 −3𝑥 =20 2𝑦= 3 2 𝑥+4 𝟐𝒚= 𝟑 𝟐 𝒙+𝟒 3 2 ÷ 2 1 = 3 2 × 1 2 = 3 4 𝟒𝒚−𝟑𝒙=𝟐𝟎 𝟐 𝟐 +𝟑𝒙 +𝟑𝒙 𝟐 𝟒𝒚=𝟑𝒙+𝟐𝟎 𝟒 𝟒 𝟒 𝒚= 𝟑 𝟒 𝒙+𝟐 𝒚= 𝟑 𝟒 𝒙+𝟓 Yes, the lines are parallel because the have the same slopes.

35 Mrs. Rivas 𝒎= 𝒚 𝟐 − 𝒚 𝟏 𝒙 𝟐 − 𝒙 𝟏 𝒁𝒀= 𝟑−𝟒 𝟐−(−𝟐) 𝑾𝑿= −𝟏−(−𝟏) −𝟑−(−𝟏)
Use slopes to determine whether the opposite sides of quadrilateral WXYZ are parallel. 𝒎= 𝒚 𝟐 − 𝒚 𝟏 𝒙 𝟐 − 𝒙 𝟏 33.𝑊(−1, −1), 𝑋(−3, −1), 𝑌(−2, 4), 𝑍(2, 3) 𝒁 𝒀 𝒁𝒀= 𝟑−𝟒 𝟐−(−𝟐) 𝑾𝑿= −𝟏−(−𝟏) −𝟑−(−𝟏) = 𝟑−𝟒 𝟐+𝟐 = −𝟏+𝟏 −𝟑+𝟏 𝑾 𝑿 = −𝟏 𝟒 = 𝟎 −𝟐 =− 𝟏 𝟒 =𝟎

36 Mrs. Rivas Use slopes to determine whether the opposite sides of quadrilateral WXYZ are parallel. 𝒎= 𝒚 𝟐 − 𝒚 𝟏 𝒙 𝟐 − 𝒙 𝟏 33.𝑊(−1, −1), 𝑋(−3, −1), 𝑌(−2, 4), 𝑍(2, 3) 𝒁 − 𝟏 𝟒 𝒀 𝑿𝒀= 𝟒−(−𝟏) −𝟐−(−𝟑) 𝑾𝒁= −𝟏−𝟑 −𝟏−𝟐 = 𝟒+𝟏 −𝟐+𝟑 = −𝟒 −𝟑 𝟎 𝑾 𝑿 = 𝟓 −𝟏 = 𝟒 𝟑 =−𝟓 No, the lines are NOT parallel because the don’t have the same slopes.

37 Mrs. Rivas Use slopes to determine whether the opposite sides of quadrilateral WXYZ are parallel. 𝒎= 𝒚 𝟐 − 𝒚 𝟏 𝒙 𝟐 − 𝒙 𝟏 34.𝑊(−1, 1), 𝑋(2, 4), 𝑌(4, 1), 𝑍(1, −2) 𝒁 𝒀 𝒁𝒀= −𝟐−𝟏 𝟏−𝟒 𝑾𝑿= 𝟒−𝟏 𝟐−(−𝟏) = −𝟑 −𝟑 𝑾 𝑿 = 𝟒−𝟏 𝟐+𝟏 = 𝟑 𝟑 =𝟏 =𝟏 Yes, the lines are parallel because the have the same slopes.

38 Mrs. Rivas 𝒎= 𝒚 𝟐 − 𝒚 𝟏 𝒙 𝟐 − 𝒙 𝟏 = −𝟒+𝟏 𝟏+𝟐 = −𝟖+𝟑 −𝟕 =− 𝟓 𝟑 = 𝟓 𝟕
For Exercises 35 and 36, are lines ℓ 𝟏 and ℓ 𝟐 perpendiular? Explain. 35. 𝒎= 𝒚 𝟐 − 𝒚 𝟏 𝒙 𝟐 − 𝒙 𝟏 ℓ 𝟐 = −𝟖−(−𝟑) −𝟐−𝟓 ℓ 𝟏 = −𝟒−(−𝟏) 𝟏−(−𝟐) = −𝟒+𝟏 𝟏+𝟐 = −𝟖+𝟑 −𝟕 =− 𝟓 𝟑 = 𝟓 𝟕 No, the lines are NOT Perpendicular because the don’t have opposite reciprocal slopes.

39 Mrs. Rivas 𝒎= 𝒚 𝟐 − 𝒚 𝟏 𝒙 𝟐 − 𝒙 𝟏 = −𝟐−𝟔 −𝟏+𝟓 = 𝟑−𝟎 𝟏+𝟓 =− 𝟖 𝟒 = 𝟑 𝟔
For Exercises 35 and 36, are lines ℓ 𝟏 and ℓ 𝟐 perpendiular? Explain. 36. 𝒎= 𝒚 𝟐 − 𝒚 𝟏 𝒙 𝟐 − 𝒙 𝟏 ℓ 𝟐 = 𝟑−𝟎 𝟏−(−𝟓) ℓ 𝟏 = −𝟐−𝟔 −𝟏−(−𝟓) = −𝟐−𝟔 −𝟏+𝟓 = 𝟑−𝟎 𝟏+𝟓 =− 𝟖 𝟒 = 𝟑 𝟔 =−𝟐 = 𝟏 𝟐 Yes, the lines are Perpendicular because the have opposite reciprocal slopes.

40 Mrs. Rivas 𝒚− 𝒚 𝟏 =𝒎(𝒙− 𝒙 𝟏 ) 𝒚−𝟐= 𝟏 𝟑 (𝒙−𝟔) 𝒚−𝟐= 𝟏 𝟑 𝒙−𝟐 𝒚= 𝟏 𝟑 𝒙
Write an equation of the line perpendicular to the given line that contains D. 37. 𝐷 6, 2 ; 𝑦 =−3𝑥 + 5 “Opposite Reciprocal slope” 𝒎 = 𝟏 𝟑 𝒚− 𝒚 𝟏 =𝒎(𝒙− 𝒙 𝟏 ) 𝒚−𝟐= 𝟏 𝟑 (𝒙−𝟔) Use the distributive property 𝒚−𝟐= 𝟏 𝟑 𝒙−𝟐 Solve for y: 𝒚= 𝟏 𝟑 𝒙

41 Mrs. Rivas 𝒚− 𝒚 𝟏 =𝒎(𝒙− 𝒙 𝟏 ) 𝒚−(−𝟑)=−𝟐(𝒙−𝟎) 𝒚+𝟑=−𝟐(𝒙−𝟎) 𝒚+𝟑=−𝟐𝒙−𝟎
Write an equation of the line perpendicular to the given line that contains D. 38. 𝐷 0, −3 ; 𝑦 = 1 2 𝑥 −7 “Opposite Reciprocal slope” 𝒎 =− 𝟐 𝟏 =−𝟐 𝒚− 𝒚 𝟏 =𝒎(𝒙− 𝒙 𝟏 ) 𝒚−(−𝟑)=−𝟐(𝒙−𝟎) 𝒚+𝟑=−𝟐(𝒙−𝟎) Use the distributive property 𝒚+𝟑=−𝟐𝒙−𝟎 Solve for y: 𝒚=−𝟐𝒙−𝟑

42 Mrs. Rivas 𝒚− 𝒚 𝟏 =𝒎(𝒙− 𝒙 𝟏 ) 𝒚−𝟏= 𝟑 𝟐 (𝒙−(−𝟖)) 𝒚−𝟏= 𝟑 𝟐 (𝒙+𝟖)
Write an equation of the line perpendicular to the given line that contains D. 39. 𝐷 −8,1 ; 𝑦 =− 2 3 𝑥+4 “Opposite Reciprocal slope” 𝒎 = 𝟑 𝟐 𝒚− 𝒚 𝟏 =𝒎(𝒙− 𝒙 𝟏 ) 𝒚−𝟏= 𝟑 𝟐 (𝒙−(−𝟖)) 𝒚−𝟏= 𝟑 𝟐 (𝒙+𝟖) Use the distributive property 𝒚−𝟏= 𝟑 𝟐 𝒙+𝟏𝟐 Solve for y: 𝒚= 𝟑 𝟐 𝒙+𝟏𝟑

43 Mrs. Rivas 𝒚− 𝒚 𝟏 =𝒎(𝒙− 𝒙 𝟏 ) 𝒚−𝟐=− 𝟏 𝟓 (𝒙−𝟐) 𝒚−𝟐=− 𝟏 𝟓 𝒙+ 𝟐 𝟓
Write an equation of the line perpendicular to the given line that contains D. 40. 𝐷(2, 2); 𝑦 = 5𝑥 + 3 “Opposite Reciprocal slope” 𝒎 =− 𝟏 𝟓 𝒚− 𝒚 𝟏 =𝒎(𝒙− 𝒙 𝟏 ) 𝒚−𝟐=− 𝟏 𝟓 (𝒙−𝟐) Use the distributive property 𝒚−𝟐=− 𝟏 𝟓 𝒙+ 𝟐 𝟓 Solve for y: = = 12 5 𝒚=− 𝟏 𝟓 𝒙+ 𝟏𝟐 𝟓


Download ppt "Mrs. Rivas "

Similar presentations


Ads by Google