Download presentation
Presentation is loading. Please wait.
1
Filtering Geophysical Data: Be careful!
Filtering: basic concepts Seismogram examples, high-low-bandpass filters The crux with causality Windowing seismic signals Various window functions Multitaper approach Wavelets (principle) Scope: Understand the effects of filtering on time series (seismograms). Get to know frequently used windowing functions. Computational Geophysics and Data Analysis
2
Computational Geophysics and Data Analysis
Why filtering Get rid of unwanted frequencies Highlight signals of certain frequencies Identify harmonic signals in the data Correcting for phase or amplitude characteristics of instruments Prepare for down-sampling Avoid aliasing effects Computational Geophysics and Data Analysis
3
Computational Geophysics and Data Analysis
A seismogram Amplitude Time (s) Spectral amplitude Frequency (Hz) Computational Geophysics and Data Analysis
4
Computational Geophysics and Data Analysis
Digital Filtering Often a recorded signal contains a lot of information that we are not interested in (noise). To get rid of this noise we can apply a filter in the frequency domain. The most important filters are: High pass: cuts out low frequencies Low pass: cuts out high frequencies Band pass: cuts out both high and low frequencies and leaves a band of frequencies Band reject: cuts out certain frequency band and leaves all other frequencies Computational Geophysics and Data Analysis
5
Computational Geophysics and Data Analysis
Cutoff frequency Computational Geophysics and Data Analysis
6
Cut-off and slopes in spectra
Computational Geophysics and Data Analysis
7
Computational Geophysics and Data Analysis
Digital Filtering Computational Geophysics and Data Analysis
8
Computational Geophysics and Data Analysis
Low-pass filtering Computational Geophysics and Data Analysis
9
Computational Geophysics and Data Analysis
Lowpass filtering Computational Geophysics and Data Analysis
10
Computational Geophysics and Data Analysis
High-pass filter Computational Geophysics and Data Analysis
11
Computational Geophysics and Data Analysis
Band-pass filter Computational Geophysics and Data Analysis
12
Computational Geophysics and Data Analysis
The simplemost filter The simplemost filter gets rid of all frequencies above a certain cut-off frequency (low-pass), „box-car“ Computational Geophysics and Data Analysis
13
Computational Geophysics and Data Analysis
The simplemost filter … and its brother … (high-pass) Computational Geophysics and Data Analysis
14
… let‘s look at the consequencse
… but what does H(w) look like in the time domain … remember the convolution theorem? Computational Geophysics and Data Analysis
15
Computational Geophysics and Data Analysis
… surprise … Computational Geophysics and Data Analysis
16
Zero phase and causal filters
Zero phase filters can be realised by Convolve first with a chosen filter Time reverse the original filter and convolve again First operation multiplies by F(w), the 2nd operation is a multiplication by F*(w) The net multiplication is thus | F(w)|2 These are also called two-pass filters Computational Geophysics and Data Analysis
17
The Butterworth Filter (Low-pass, 0-phase)
Computational Geophysics and Data Analysis
18
Computational Geophysics and Data Analysis
… effect on a spike … Computational Geophysics and Data Analysis
19
… on a seismogram … … varying the order …
Computational Geophysics and Data Analysis
20
… on a seismogram … … varying the cut-off frequency…
Computational Geophysics and Data Analysis
21
The Butterworth Filter (High-Pass)
Computational Geophysics and Data Analysis
22
Computational Geophysics and Data Analysis
… effect on a spike … Computational Geophysics and Data Analysis
23
… on a seismogram … … varying the order …
Computational Geophysics and Data Analysis
24
… on a seismogram … … varying the cut-off frequency…
Computational Geophysics and Data Analysis
25
The Butterworth Filter (Band-Pass)
Computational Geophysics and Data Analysis
26
Computational Geophysics and Data Analysis
… effect on a spike … Computational Geophysics and Data Analysis
27
… on a seismogram … … varying the order …
Computational Geophysics and Data Analysis
28
… on a seismogram … … varying the cut-off frequency…
Computational Geophysics and Data Analysis
29
Zero phase and causal filters
When the phase of a filter is set to zero (and simply the amplitude spectrum is inverted) we obtain a zero-phase filter. It means a peak will not be shifted. Such a filter is acausal. Why? Computational Geophysics and Data Analysis
30
Butterworth Low-pass (20 Hz) on spike
Computational Geophysics and Data Analysis
31
(causal) Butterworth Low-pass (20 Hz) on spike
Computational Geophysics and Data Analysis
32
Butterworth Low-pass (20 Hz) on data
Computational Geophysics and Data Analysis
33
Other windowing functions
So far we only used the Butterworth filtering window In general if we want to extract time windows from (permanent) recordings we have other options in the time domain. The key issues are Do you want to preserve the main maxima at the expense of side maxima? Do you want to have as little side lobes as posible? Computational Geophysics and Data Analysis
34
Computational Geophysics and Data Analysis
Example Computational Geophysics and Data Analysis
35
Computational Geophysics and Data Analysis
Possible windows Plain box car (arrow stands for Fourier transform): Bartlett Computational Geophysics and Data Analysis
36
Computational Geophysics and Data Analysis
Possible windows Hanning The spectral representations of the boxcar, Bartlett (and Parzen) functions are: Computational Geophysics and Data Analysis
37
Computational Geophysics and Data Analysis
Examples Computational Geophysics and Data Analysis
38
Computational Geophysics and Data Analysis
Examples Computational Geophysics and Data Analysis
39
The Gabor transform: t-f misfits
phase information: can be measured reliably ± linearly related to Earth structure physically interpretable amplitude information: hard to measure (earthquake magnitude often unknown) non-linearly related to structure [ t-w representation of synthetics, u(t) ] [ t-w representation of data, u0(t) ] Computational Geophysics and Data Analysis
40
Computational Geophysics and Data Analysis
The Gabor time window The Gaussian time windows is given by Computational Geophysics and Data Analysis
41
Computational Geophysics and Data Analysis
Example Computational Geophysics and Data Analysis
42
Computational Geophysics and Data Analysis
Multitaper Goal: „obtaining a spectrum with little or no bias and small uncertainties“. problem comes down to finding the right tapering to reduce the bias (i.e, spectral leakage). In principle we seek: This section follows Prieto eet al., GJI, Ideas go back to a paper by Thomson (1982). Computational Geophysics and Data Analysis
43
Multi-taper Principle
Data sequence x is multiplied by a set of orthgonal sequences (tapers) We get several single periodograms (spectra) that are then averaged The averaging is not even, various weights apply Tapers are constructed to optimize resistance to spectral leakage Weighting designed to generate smooth estimate with less variance than with single tapers Computational Geophysics and Data Analysis
44
Computational Geophysics and Data Analysis
Spectrum estimates We start with with To maintain total power. Computational Geophysics and Data Analysis
45
Condition for optimal tapers
N is the number of points, W is the resolution bandwith (frequency increment) One seeks to maximize l the fraction of energy in the interval (–W,W). From this equation one finds a‘s by an eigenvalue problem -> Slepian function Computational Geophysics and Data Analysis
46
Computational Geophysics and Data Analysis
Slepian functions The tapers (Slepian functions) in time and frequency domains Computational Geophysics and Data Analysis
47
Computational Geophysics and Data Analysis
Final assembly Slepian sequences (tapers) Final averaging of spectra Computational Geophysics and Data Analysis
48
Computational Geophysics and Data Analysis
Example Computational Geophysics and Data Analysis
49
Classical Periodogram
Computational Geophysics and Data Analysis
50
Computational Geophysics and Data Analysis
… and its power … Computational Geophysics and Data Analysis
51
… multitaper spectrum …
Computational Geophysics and Data Analysis
52
Wavelets – the principle
Motivation: Time-frequency analysis Multi-scale approach „when do we hear what frequency?“ Computational Geophysics and Data Analysis
53
Continuous vs. local basis functions
Computational Geophysics and Data Analysis
54
Computational Geophysics and Data Analysis
55
Computational Geophysics and Data Analysis
Some maths A wavelet can be defined as With the transform pair: Computational Geophysics and Data Analysis
56
Computational Geophysics and Data Analysis
57
Resulting wavelet representation
Computational Geophysics and Data Analysis
58
Computational Geophysics and Data Analysis
Shifting and scaling Computational Geophysics and Data Analysis
59
Computational Geophysics and Data Analysis
60
Application to seismograms
Computational Geophysics and Data Analysis
61
Computational Geophysics and Data Analysis
Graphical comparison Computational Geophysics and Data Analysis
62
Computational Geophysics and Data Analysis
Summary Filtering is not necessarily straight forward, even the fundamental operations (LP, HP, BP, etc) require some thinking before application to data. The form of the filter decides upon the changes to the waveforms of the time series you are filtering For seismological applications filtering might drastically influence observables such as travel times or amplitudes „Windowing“ the signals in the right way is fundamental to obtain the desired filtered sequence Computational Geophysics and Data Analysis
63
Computational Geophysics and Data Analysis
Similar presentations
© 2025 SlidePlayer.com. Inc.
All rights reserved.