Download presentation
Presentation is loading. Please wait.
Published byQuentin Gardner Modified over 6 years ago
1
Measurements of the 238U radiative capture cross section using C6D6
F. Mingrone on behalf of the n_TOF Collaboration ANDES Final Meeting Bruxelles – October 21, 2013
2
Motivations NEA High Priority Request List
Advanced nuclear systems Improvement in the design of Nuclear fuel cycles EXFOR DATABASE: 25 datasets in the resolved resonance region and a few less in the unresolved BUT still inconsistencies for the capture cross section up to 25 keV EC-JRC-IRMM Gelina with C6D6 detection system NEA High Priority Request List UNCERTAINTY IN THE CROSS SECTION BELOW 2% Nea high priority list n_TOF with TAC detection system n_TOF with C6D6 detection system
3
EXPERIMENTAL TECHNIQUE
Detector Flight path L Sample under analysis Proton beam Neutron beam Spallation target
4
EXPERIMENTAL TECHNIQUE
Detector Flight path L Sample under analysis Proton beam Neutron beam Spallation target En [eV] FWHM [cm] DEn [eV] 1 3 3.2 × 10-4 10 3.2 × 10-3 102 4 4.3 × 10-2 103 5 5.4 × 10-1 104 11 105 27 2.9 × 102 106 49 5.3 × 103
5
EXPERIMENTAL TECHNIQUE
Using a Time of Flight (TOF) technique, capture cross section is determined through the measurement of the reaction yield YR(En): N: normalization factor to obtain an absolute capture yield Cw: weighted counts background subtracted F: incident neutron fluence ε = k x Ec: detection efficiency The experimental yield can be expressed in terms of total (stot) and capture (sg) cross section:
6
EXPERIMENTAL TECHNIQUE
For capture measurements, detection efficiency have to be independent from g-spectrum multiplicity and from g-ray energy distribution Total Absorption Detection eg ~ 100 % 4p geometry detectors Total Energy Detection Low detection efficiency eg Low solid angle Basically we want to detect only one gamma ray per cascade
7
n_TOF facility at CERN CERN Experiment PS213
8
n_TOF facility: characteristics
Proton beam momentum 20 GeV/c Intensity (dedicated mode) 7 × protons/pulse Repetition frequency 1 pulse/2.4 s Pulse width 7 ns (rms) Neutrons/proton 300 Lead target dimensions =60 cm, h=40 cm Cooling material H2O Moderation material Borated Water (H2O % H3BO3) Moderator thickness in the exit face 1 cm cooling material + 4 cm moderator
9
Radiative capture on 238U campaign
SAMPLE DATE (YEAR 2012) PROTONS 238U 10 d: March 29 – April 03, April 25 – 27, April 30 – May 02; Filters – 7 d: April 5 – 6, April 11 – 16 7.85 × 1.2 × 1018 Sample Out 6 d: March 28 – 2; Filters – 3 d: April 9 – 11 6.271 × 1.64 × 1017 238U packing 2 d: April 21 – 22 9.65 × 1016 Beam off 0.25 d: March 28, April 5, April 11 Calibrations Pb 2d: April 03 – 04; Filters – 2 d: April 8 – 9 1.50 × 1.53 × 1017 C (5 mm) 3 d: April 4 – 5, April 17; Filters – 2 d: April 7 – 8 1.46 × 1017 × 1017 C (10 mm) 2 d: April 19 – 20; Filters – 3 d: April 28 – 30 9.71 × 1.11 × 1017 Au (50 µm) 2 d: April 5, April 16 4.86 × 1016 Au (300 µm) 2 d: April 17 – 18; Filters – 2 d: April 27 – 28 8.33 × 9.93 × 1016 Ag 1 d: May 02 1.60 × 1016 238U(n,g) – TOT: 17 days
10
Radiative capture on 238U campaign
SAMPLE DATE (YEAR 2012) PROTONS 238U 10 d: March 29 – April 03, April 25 – 27, April 30 – May 02; Filters – 7 d: April 5 – 6, April 11 – 16 7.85 × 1.2 × 1018 Sample Out 6 d: March 28 – 2; Filters – 3 d: April 9 – 11 6.271 × 1.64 × 1017 238U packing 2 d: April 21 – 22 9.65 × 1016 Beam off 0.25 d: March 28, April 5, April 11 Calibrations Pb 2d: April 03 – 04; Filters – 2 d: April 8 – 9 1.50 × 1.53 × 1017 C (5 mm) 3 d: April 4 – 5, April 17; Filters – 2 d: April 7 – 8 1.46 × 1017 × 1017 C (10 mm) 2 d: April 19 – 20; Filters – 3 d: April 28 – 30 9.71 × 1.11 × 1017 Au (50 µm) 2 d: April 5, April 16 4.86 × 1016 Au (300 µm) 2 d: April 17 – 18; Filters – 2 d: April 27 – 28 8.33 × 9.93 × 1016 Ag 1 d: May 02 1.60 × 1016 BACKGROUND – TOT: 14.5 days
11
Radiative capture on 238U campaign
SAMPLE DATE (YEAR 2012) PROTONS 238U 10 d: March 29 – April 03, April 25 – 27, April 30 – May 02; Filters – 7 d: April 5 – 6, April 11 – 16 7.85 × 1.2 × 1018 Sample Out 6 d: March 28 – 2; Filters – 3 d: April 9 – 11 6.271 × 1.64 × 1017 238U packing 2 d: April 21 – 22 9.65 × 1016 Beam off 0.25 d: March 28, April 5, April 11 Calibrations Pb 2d: April 03 – 04; Filters – 2 d: April 8 – 9 1.50 × 1.53 × 1017 C (5 mm) 3 d: April 4 – 5, April 17; Filters – 2 d: April 7 – 8 1.46 × 1017 × 1017 C (10 mm) 2 d: April 19 – 20; Filters – 3 d: April 28 – 30 9.71 × 1.11 × 1017 Au (50 µm) 2 d: April 5, April 16 4.86 × 1016 Au (300 µm) 2 d: April 17 – 18; Filters – 2 d: April 27 – 28 8.33 × 9.93 × 1016 Ag 1 d: May 02 1.60 × 1016 NORMALIZATION – TOT: 3.5 days
12
Radiative capture on 238U campaign
SAMPLE DATE (YEAR 2012) PROTONS 238U 10 d: March 29 – April 03, April 25 – 27, April 30 – May 02; Filters – 7 d: April 5 – 6, April 11 – 16 7.85 × 1.2 × 1018 Sample Out 6 d: March 28 – 2; Filters – 3 d: April 9 – 11 6.271 × 1.64 × 1017 238U packing 2 d: April 21 – 22 9.65 × 1016 Beam off 0.25 d: March 28, April 5, April 11 Calibrations Pb 2d: April 03 – 04; Filters – 2 d: April 8 – 9 1.50 × 1.53 × 1017 C (5 mm) 3 d: April 4 – 5, April 17; Filters – 2 d: April 7 – 8 1.46 × 1017 × 1017 C (10 mm) 2 d: April 19 – 20; Filters – 3 d: April 28 – 30 9.71 × 1.11 × 1017 Au (50 µm) 2 d: April 5, April 16 4.86 × 1016 Au (300 µm) 2 d: April 17 – 18; Filters – 2 d: April 27 – 28 8.33 × 9.93 × 1016 Ag 1 d: May 02 1.60 × 1016 ENTIRE CAMPAIGN: 35 days
13
EXPECTED RADIOACTIVITY
Samples Enriched metallic uranium rectangular plate (53×30 mm2, 235 µm thick) enveloped inside a 20 mm aluminum and a 25 mm kapton thick foils. Provided by the EC-JRC-IRMM MASS 6.125 ± g 9.6×10-4 atoms/barn % 238 U 99.99 % % 235 U < 11 ppm % U < 1 ppm each EXPECTED RADIOACTIVITY 12.4 kBq/g (76 kBq) Isotopic analysis IRMM in 1984
14
ATOMIC DENSITY [atoms/barn]
Samples The other samples analyzed have been chosen with geometry as similar as possible to that of the 238U. 197Au SAMPLE SIZE [mm] MASS [g] ATOMIC DENSITY [atoms/barn] 197Au 53.30 × 29.65 9.213 Pb 53.77 × 30.19 9.44 C 53.35 × 30.20 28.89 Fe 53.71 × 30.22 3.225 Ag 53.75 × 30.30 4.620 C natPb
15
New 2012 measurement: EXPERIMENTAL SET–UP
Two different setups for capture measurements Total Absorption Calorimeter 40 BaF2 crystals in a 4p geometry Detects the entire g cascade (together with background n) Two C6D6 scintillation detectors Optimized for an extremely low neutron sensitivity Only one g–ray detected per cascade Total Energy Detection System with PHWT BaF2 C6D6 C6D6 NEUTRON FLUX
16
Calibrations 137Cs 88Y Am-Be
accurate study of the calibrations between the flash-ADC channels and the deposited energy was performed on a weekly basis using three standard sources: 137Cs (661.7 keV), 88Y (0.898 and MeV) and Am/Be (4.44 MeV). Comparing the different calibration spectra for each isotope, we notice that they are not stable, and for this reason we extracted six calibration lines from the different measurements made.
17
Calibrations 137Cs 88Y Am-Be
18
Simulated Detectors Response: Uniform emission
Detector response convoluted with the experimental resolution of the det
19
Simulated Detectors Response: Exponential attenuation
20
Weighting Functions 238U 197Au
21
Flux stability
22
C6D6 counts stability 238U first resonance
23
C6D6 counts stability 238U first resonance
24
C6D6 counts stability
25
238U(n,g)239U: TOF spectra Linee energia
26
Background subtraction
27
Background subtraction
Natural radioactivity Empty Frame and Dummy Scattered neutrons In-beam gamma rays
28
Background subtraction
Natural radioactivity Empty Frame and Dummy Scattered neutrons In-beam gamma rays EF U Pb Au C
29
Background subtraction
Natural radioactivity
30
Background subtraction
Natural radioactivity Empty Frame and Dummy Scattered neutrons In-beam gamma rays
31
Background subtraction
Empty Frame and Dummy Natural radioactivity Scattered neutrons In-beam gamma rays
32
Background subtraction
Natural radioactivity Empty Frame and Dummy Scattered neutrons In-beam gamma rays
33
Background subtraction
Scattered neutrons 50 bin per decade
34
Background subtraction
Scattered neutrons
35
Background subtraction
Scattered neutrons
36
Background subtraction
Scattered neutrons 50 bin per decade
37
Background subtraction
Scattered neutrons – 238U – Scattered neutrons
38
Background subtraction
Natural radioactivity Empty Frame and Dummy Scattered neutrons In-beam gamma rays
39
Background subtraction
Scattered neutrons – 238U – natPb
40
Background subtraction
– 238U background subtracted
41
Normalization: saturated resonance technique
42
197Au YIELD: analysis validation
43
197Au YIELD: analysis validation
44
197Au YIELD: analysis validation
45
197Au YIELD: analysis validation
46
197Au YIELD: analysis validation
47
197Au YIELD: analysis validation
48
197Au YIELD: analysis validation
49
197Au YIELD: analysis validation
50
197Au YIELD: analysis validation
51
197Au YIELD: analysis validation
52
197Au YIELD: analysis validation
53
197Au YIELD: analysis validation
54
238U CAPTURE YIELD
55
238U CAPTURE YIELD
56
238U CAPTURE YIELD
57
238U CAPTURE YIELD
58
238U CAPTURE YIELD
59
238U CAPTURE YIELD
60
238U CAPTURE YIELD
61
238U CAPTURE YIELD
62
238U CAPTURE YIELD
63
238U CAPTURE YIELD
64
238U CAPTURE YIELD
65
238U CAPTURE YIELD
66
238U CAPTURE YIELD
67
238U CAPTURE YIELD
68
238U CAPTURE YIELD
69
238U CAPTURE YIELD
70
CONCLUSIONS Accurate data rejection and calibrations (6 calibration lines extracted) Accurate background subtraction (analysis of the background level with filters ongoing) SOURCE OF UNCERTAINTY 1 eV < En < 1-3 keV THERMAL + URR Sample mass 0.03% Neutron flux (shape in En) ~0.5% Neutron flux (abs. value) [i.e. normalization] <1% Background (at resonance peek) 0-1% 4-5% Overall % 5-6%
71
Thank you! Federica Mingrone mingrone@bo.infn.it
Università di Bologna, Dipartimento di Fisica e Astronomia Istituto Nazionale di Fisica Nucleare, Sezione di Bologna
72
BACKUP
73
238U(n, g)239U: TOF spectra Linee energia
74
Background subtraction
75
Unresolved Resonance Region: GOLD
76
Yield Au: thermal
77
Yield Au: eV
78
Yield 238U: eV
79
Counting statistic uncertainties
100 bin per decade
Similar presentations
© 2024 SlidePlayer.com. Inc.
All rights reserved.