Download presentation
Presentation is loading. Please wait.
Published byRebecca Foster Modified over 6 years ago
1
Charm spectroscopy 1 A. Drutskoy University of Cincinnati
AAAA 1 A. Drutskoy University of Cincinnati Charm spectroscopy American Physical Society Meeting April 14-17, 2007, Jacksonville, Florida . Charm spectroscopy, APS meeting, Apr , 2007, Jacksonville, Florida, A. Drutskoy A.Drutskoy, 32 Int'l Conference on HEP, August 16-22, 2004
2
Outline CLEO 2 Meson classification, potential models.
AAAA 2 Outline Meson classification, potential models. Recent experimental results on excited D** production. Experimental results and classification of DsJ mesons. Charmonium state X(3872). Charmonium states X(3940), Y(3940) and Z(3930). New charmonium states Y(4260) and Y(4320). New charm baryons. Conclusions. CLEO Charm spectroscopy, APS meeting, Apr , 2007, Jacksonville, Florida, A. Drutskoy A.Drutskoy, 32 Int'l Conference on HEP, August 16-22, 2004
3
Conventional and unconventional mesons
AAAA 3 Conventional and unconventional mesons 1. Conventional quark- antiquark mesons (qq). 2. Glueballs (gg, ggg). Lightest glueballs JPC = 0++ and 2++. 3. Hybrid mesons (qqg). Ground states JPC = 0- +, 1- +, 1- -, 2- +. 4. Tetraquarks (qqqq). Large binding energy. Non-qq flavor? 5. Molecular states (qq qq). Small binding energy. Deuteron-like. 6. Mixture of these states. These states can be separated using information on masses, widths, quantum numbers, production and decay modes (rates). Theoretical calculations, potential models, lattice calculations. Coupled-channel effects. If Mres close to M1+M mass shift? Charm spectroscopy, APS meeting, Apr , 2007, Jacksonville, Florida, A. Drutskoy A.Drutskoy, 32 Int'l Conference on HEP, August 16-22, 2004
4
Potential models, energy splitting
AAAA 4 Potential models, energy splitting s1 s2 L s1 s2 Jq S12 L (L S2) S1 L (S1 S2) Jq is a good quantum number => separated D(s) meson spin-doublets: (0-,1-), (0+,1+), (1+,2+). Energy splitting: singlet and triplet. 1- cc 1- cq Y’ 2S 2S 0- 0- h’c Jq=3/2 Jq=1/2 2+ Ds2 2+ cc2 Mass 1+ 1+ 1+ 1P L=1 1+ 1P L=1 cc1 D’s1 hc Ds1 0+ 0+ cc0 D’s0 1S 1S 1- 1- J/Y Ds* L=0 L=0 0- 0- hc Ds Charm spectroscopy, APS meeting, Apr , 2007, Jacksonville, Florida, A. Drutskoy A.Drutskoy, 32 Int'l Conference on HEP, August 16-22, 2004
5
D**0 and D**+ meson searches
AAAA 5 D**0 and D**+ meson searches D** mesons are studies using fully reconstru- cted B meson decays. It provides strong background suppression. hep-ex/ (2006) ~388M No restrictions on D** quantum numbers in B decays. Charm spectroscopy, APS meeting, Apr , 2007, Jacksonville, Florida, A. Drutskoy A.Drutskoy, 32 Int'l Conference on HEP, August 16-22, 2004
6
Orbitally excited D**0 and D**+ mesons
AAAA 6 Orbitally excited D**0 and D**+ mesons (2465.71.80.8 ) MeV/c2 1.2 4.7 (49.73.84.1 4.9) MeV Theory and experiment are in good agreement Charm spectroscopy, APS meeting, Apr , 2007, Jacksonville, Florida, A. Drutskoy A.Drutskoy, 32 Int'l Conference on HEP, August 16-22, 2004
7
DsJ meson spectroscopy
AAAA 7 DsJ meson spectroscopy Measured masses of DsJ(2317) and DsJ(2460) are significantly lower than those predicted in potential models. DsJ(2573) DsJ(2536) * Ds DsJ(2460) Ds DsJ(2317) Their quantum numbers 0+ and 1+ are well established now. Many theoretical papers have been published since 2003, trying to explain narrow DsJ(2317) and DsJ(2460) resonances: chiral partners, DK threshold effect, four-quark states? + + Charm spectroscopy, APS meeting, Apr , 2007, Jacksonville, Florida, A. Drutskoy A.Drutskoy, 32 Int'l Conference on HEP, August 16-22, 2004
8
New DsJ(2700) meson in B+ >D0D0K+ decay
8 New DsJ(2700) meson in B+ >D0D0K+ decay hep-ex/ 449M BB ■ B+→D0DsJ(2700) ■ B+→ψ(3770)K+ ■ B+→ψ(4160)K+ ■B+→D0D0K+NR ■threshold contribution DsJ(2700) fitted B signal Charm spectroscopy, APS meeting, Apr , 2007, Jacksonville, Florida, A. Drutskoy
9
DsJ(2700) helicity angle distribution
9 DsJ(2700) helicity angle distribution J=0 2/ndf = 185/5 J=1 2/ndf = 7/5 J=2 2/ndf = 250/5 JP=1- is favored. cs radial excitation 23S1 ? (predicted by potential models at M~2720MeV) ? or chiral symmetry doublet? eff. corrected DsJ(2700) helicity angle distribution Charm spectroscopy, APS meeting, Apr , 2007, Jacksonville, Florida, A. Drutskoy
10
New DsJ(2860) meson in e+e- >D0K+X, D+K0X
10 New DsJ(2860) meson in e+e- >D0K+X, D+K0X hep-ex/ 240 fb-1 103 BG subtracted Strong peak at 2.573 GeV/c2 DsJ(2860) Hint of a broad state at 2.69 GeV/c2 M(DK) (GeV/c2) =>New resonance at 2.86 GeV/c2 Charm spectroscopy, APS meeting, Apr , 2007, Jacksonville, Florida, A. Drutskoy
11
DsJ meson spectroscopy
AAAA 11 DsJ meson spectroscopy DsJ(2700) : Jp = 1- Is Ds(2700) state the radial excitation 23S1 (predicted by potential models at M~2720MeV) ? DsJ(2860) ?? Ds(2700) ? DsJ(2573) DsJ(2536) DsJ(2860) -> D0 K+ (0-0- ) * DsJ(2460) Ds DsJ(2317) Ds Is DsJ(2860) state the radial excitation of DsJ(2317) ? Charm spectroscopy, APS meeting, Apr , 2007, Jacksonville, Florida, A. Drutskoy A.Drutskoy, 32 Int'l Conference on HEP, August 16-22, 2004
12
Charmonium spectroscopy
AAAA 12 Charmonium spectroscopy cc hc’’ cc1’ hc’ hc2 Y2 Y3 MD*+MD hc’ 2MD Y’ cc2 hc cc1 cc0 blue lines: predictions black lines: measurements J/Y hc Charm spectroscopy, APS meeting, Apr , 2007, Jacksonville, Florida, A. Drutskoy A.Drutskoy, 32 Int'l Conference on HEP, August 16-22, 2004
13
hc(1P1) and hc(2S) charmonium states
13 hc(1P1) and hc(2S) charmonium states Belle first observed c(2S) at B-> K(KsK+-) and then at e+e- -> J/ X c(2S) was then confirmed by CLEO and BaBar With Inclusive c decay CLEO 3.08M (2S) hc 15040 events stat. sig. 3.8 B→ K(KsK+p-) MPDG=3637.7±4.4MeV/c2 M(hc)=3524.90.70.4 MeV/c2 M(0 recoil) (GeV) CLEO PRL 95 (2005) CLEO PRD 72 (2005) Belle PRL 89 (2002) BaBar PRD 92 (2004) Charm spectroscopy, APS meeting, Apr , 2007, Jacksonville, Florida, A. Drutskoy
14
X(3872) > J/y p+p- decay ’ 14 ’ X(3872) Events/10 MeV 220 pb-1
First observed by Belle in B± -> K±(J/+-).Then confirmed by CDF, D0 and BaBar. Belle X(3872) 304M B’s ’ ’ X(3872) Events/10 MeV 220 pb-1 PRL 91 (2003) PRL 93 (2004) 230 pb-1 X(3872) X(3872) BaBar 234M B’s M(J/y p+p-) PRL 93 (2004) PRD 71 (2005) Charm spectroscopy, APS meeting, Apr , 2007, Jacksonville, Florida, A. Drutskoy
15
Evidence for X(3872) > g J/y
15 PRD 74 (2006) R hep-ex/ 287M BB X(3872) X(3872) 275M BB MJ/ (GeV/c2) MJ/ (GeV/c2) 19.4 5.7 events stat. sig.: 3.4 13.6 4.4 events stat. sig.: 4.0 Belle/BaBar average: It suggests that C parity of X(3872) is +1 Low g J/y rate > bad candidate for c’c1 ??? (1++). Charm spectroscopy, APS meeting, Apr , 2007, Jacksonville, Florida, A. Drutskoy
16
Evidence for sub-threshold X(3872) > w J/y
16 Evidence for sub-threshold X(3872) > w J/y hep-ex/ 275M BB 10.63.6 events 4.3 B±-> K±(J/ +-p0) X(3872) : C=+1 M(+-0) (GeV/c2) no signals for charged partners of X(3872) (BaBar) no signal for X(3872) -> J/ (BaBar) no evidence in fusion and radiative production (CLEO) Charm spectroscopy, APS meeting, Apr , 2007, Jacksonville, Florida, A. Drutskoy
17
X(3872) quantum numbers 17 1++ in B->X(3872)K decay 1++
AAAA 17 X(3872) quantum numbers Angular distributions in B->X(3872)K decay X(3872) -> J/Y p+ p- : g favors 1++. hep- ex/ 2/d.o.f=11/9 2/d.o.f=5/9 |cosl| |cos| 1++ 1++ Hint for B->X(3872)K with X(3872)->D0D0p0 favors 1++ (disfavors 2++) (next slide). PRL 96 (2006) Preference for high p+p- mass region. Possible interpretation: X(3872)->J/y r Possible X(3872) quantum numbers: Jp=1++ (or 2-+) . Charm spectroscopy, APS meeting, Apr , 2007, Jacksonville, Florida, A. Drutskoy A.Drutskoy, 32 Int'l Conference on HEP, August 16-22, 2004
18
X(3872) interpretation ? 18 DD* DD
< 1 MeV/c2 DD* X(3872) DD Interpretation of X(3872) is unclear. Molecular interpretation ? Charm spectroscopy, APS meeting, Apr , 2007, Jacksonville, Florida, A. Drutskoy
19
Near threshold D0D0p0 enhancement in B >D0D0p0K
19 Near threshold D0D0p0 enhancement in B >D0D0p0K If X(3872) is a loosely bound S wave D0D0* molecule, an enhancement in the near threshold D0D0* invariant mass spectrum is expected. PRL 97 (2006) 23.4 5.6 events 6.4 414 fb-1 M = 0.8 MeV/c2 -1.6 = -3.6 If it is X(3872), J=2 is suppressed, JPC=1++ is favored. X(3872) -> D0D0* production rate is large. This is difficult to explain within molecular interpretation. Charm spectroscopy, APS meeting, Apr , 2007, Jacksonville, Florida, A. Drutskoy
20
X(3872) in B0 and B+ decays Data are not in favor of this model. 20
PRD 73 (2006) R 6.1 2.5 232M BB S-wave D0D*0: E. Braaten et al., PRD 71, K+ D0 Data are not in favor of this model. X(3872) B+ D*0 Charm spectroscopy, APS meeting, Apr , 2007, Jacksonville, Florida, A. Drutskoy
21
Observation of X(3940) in e+e- > J/ X
21 Observation of X(3940) in e+e- > J/ X PRL 98 (2007) J/y X e- e+ 357 fb-1 M = (3943 6 6) MeV/c2 < 52 MeV/c2 (90% C. L.) Stat. sig. > 5.0 Mrecoil(J/) above DD and D*D thresholds not seen in DD and J/y w D*D is the dominant decay of X(3940) > JPC = 1++ is preferred, candidate c’c1 (or hc(3S) ? ). Charm spectroscopy, APS meeting, Apr , 2007, Jacksonville, Florida, A. Drutskoy
22
Y(3940) >w J/ near threshold peak in B >K w J/y
22 Y(3940) >w J/ near threshold peak in B >K w J/y PRL 94 (2005) 253 fb-1 2/d.o.f.=115/11 2/d.o.f.=15.6/8 stat. sig.=8.1 -> above D*D threshold -> not found in DD or D*D final states M(wJ/) If it is treated as a S-wave BW: M = 3943 11 13 MeV/c2 = 87 22 26 MeV/c2 Charm spectroscopy, APS meeting, Apr , 2007, Jacksonville, Florida, A. Drutskoy
23
Search for ccJ via gg >DD and Z(3930).
, 23 Search for ccJ via gg >DD and Z(3930). PRL 96 (2006) 395 fb-1 N sig. = 64 18 stat. signif M=3929 52 MeV/c2 =29 102 MeV/c2 D0D0 + D+D- Z(3930) Angular analysis favors J=2 Good candidate for c’c2 Charm spectroscopy, APS meeting, Apr , 2007, Jacksonville, Florida, A. Drutskoy
24
Observation of Y(4260) in ISR events and B decays
24 Observation of Y(4260) in ISR events and B decays First observed by BaBar, then confirmed by CLEO and Belle. PRL 95 (2005) 553 fb-1 Y(4260) 233 fb-1 Jp = 1-- hep- ex/ CLEO 4.9 sig. 3.1 sig. B->Y(4260)K Y(4260)-> J/y p+p- PRD 73 (2006) 13.3 fb-1 PRD 74 (2006) Charm spectroscopy, APS meeting, Apr , 2007, Jacksonville, Florida, A. Drutskoy
25
in e+e- -> hadrons (local minimum).
25 What is the Y(4260) state ? BaBar CLEO III Belle N 125 23 (~8) (4.9) 165 24 ( >7s) Mass(MeV/c2) 4259 8 +2 4 4295 Width(MeV/c2) 88 23 +6 5 133 -4.2 -3 -6 -16 -6 -4 -25 ~2.5s different 1-- state, but not seen in e+e- -> hadrons (local minimum). Interpretations: Hybrid charmonium: Zhu, PLB 625 (2005) 212; Close & Page, PLB 628 (2005) 215; Kou and Pene, PLB 631 (2005) 164; Luo and Liu, PRD 74 (2006) , … Tetraquark: Ebert et al., PLB 634 (2006) 214; PRD73(2006)094501, ... Molecules: Liu et al., PRD 72 (2005) (R); Yuan et al., PLB 634 (2006) 399 Qiao, PLB 639 (2006) 263, … Conventional: F. J. Llanes-Estrada, PRD 72 (2005) (R), … Charm spectroscopy, APS meeting, Apr , 2007, Jacksonville, Florida, A. Drutskoy
26
Observation of Y(4320) >p+p-y(2S) in ISR events
26 Observation of Y(4320) >p+p-y(2S) in ISR events M(+-(2S) Y(4260) Y(4350) 3-body phase space hep- ex/ If this peak is a single resonance: What is Y(4320)? Charm spectroscopy, APS meeting, Apr , 2007, Jacksonville, Florida, A. Drutskoy
27
What are X(3872), Y(4260) and Y(4320) ? 27 DD* DD
Currently on market: X(3872) -molecular, Y(4260) & Y(4320) - hybrids Charm spectroscopy, APS meeting, Apr , 2007, Jacksonville, Florida, A. Drutskoy
28
Charmed baryons 28 Many new charm baryon resonances hep-ex/0603052
Lc(2880)+ cx(3077)+ Lc(2940)+ cx(2980)+ 287 fb-1 Mass(Λc+ K- +)(GeV/c2) c(2980)+ : M=2978.52.12.0 MeV/c2 =43.5 7.57.0 MeV/c2 Inclusive D0p mass spectrum D0 mass sidebands Belle<>BaBar confirmed Many new charm baryon resonances Charm spectroscopy, APS meeting, Apr , 2007, Jacksonville, Florida, A. Drutskoy
29
Conclusions 29 Many new open charm and charmonium (charmonium-like)
AAAA 29 Conclusions Many new open charm and charmonium (charmonium-like) states are observed (DsJ(2700), DsJ(2860), X(3872), X(3940), Y(3940), Z(3930), Y(4260), Y(4320), baryons… ). Interpretation of some of these states is not clear. New ideas on market: four-quark states, molecular states, hybrids. Maybe some mixture of two-quark and unconventional states? It is important to determine quantum numbers of all observed states. More decay channels should be studied. It is theoretically difficult to explain some measurements of production and decay rates for some (even conventional) states (no time to discuss it in this talk). Charm spectroscopy, APS meeting, Apr , 2007, Jacksonville, Florida, A. Drutskoy A.Drutskoy, 32 Int'l Conference on HEP, August 16-22, 2004
Similar presentations
© 2024 SlidePlayer.com. Inc.
All rights reserved.