Download presentation
Presentation is loading. Please wait.
Published byHilary Norton Modified over 6 years ago
1
EE 5340 Semiconductor Device Theory Lecture 25 – Spring 2011
Professor Ronald L. Carter
2
Ideal 2-terminal MOS capacitor/diode
conducting gate, area = LW Vgate -xox SiO2 y L silicon substrate tsub Vsub x ©rlc L25-21Apr2011
3
MOS surface states** p- substr = n-channel
©rlc L25-21Apr2011
4
MOS Bands at OSI p-substr = n-channel
Fig 10.9* 2q|fp| qfp xd,max ©rlc L25-21Apr2011
5
Equivalent circuit for accumulation
Accum depth analogous to the accum Debye length = LD,acc = [eVt/(qps)]1/2 Accum cap, C’acc = eSi/LD,acc Oxide cap, C’Ox = eOx/xOx Net C is the series comb C’Ox C’acc ©rlc L25-21Apr2011
6
Equivalent circuit for Flat-Band
Surface effect analogous to the extr Debye length = LD,extr = [eVt/(qNa)]1/2 Debye cap, C’D,extr = eSi/LD,extr Oxide cap, C’Ox = eOx/xOx Net C is the series comb C’Ox C’D,extr ©rlc L25-21Apr2011
7
Equivalent circuit for depletion
Depl depth given by the usual formula = xdepl = [2eSi(Vbb)/(qNa)]1/2 Depl cap, C’depl = eSi/xdepl Oxide cap, C’Ox = eOx/xOx Net C is the series comb C’Ox C’depl ©rlc L25-21Apr2011
8
Equivalent circuit above OSI
Depl depth given by the maximum depl = xd,max = [2eSi|2fp|/(qNa)]1/2 Depl cap, C’d,min = eSi/xd,max Oxide cap, C’Ox = eOx/xOx Net C is the series comb C’Ox C’d,min ©rlc L25-21Apr2011
9
Differential charges for low and high freq
From Fig 10.27* ©rlc L25-21Apr2011
10
Ideal low-freq C-V relationship
Fig 10.25* ©rlc L25-21Apr2011
11
Comparison of low and high freq C-V
Fig 10.28* ©rlc L25-21Apr2011
12
Effect of Q’ss on the C-V relationship
Fig 10.29* ©rlc L25-21Apr2011
13
Flat band condition (approx. scale)
SiO2 p-Si q(fm-cox)= 3.15 eV q(cox-cSi)=3.1eV Ec,Ox qffp= 3.95eV EFm Ec Eg,ox~8eV EFi EFp Ev Ev ©rlc L25-21Apr2011
14
Flat-band parameters for n-channel (p-subst)
©rlc L25-21Apr2011
15
Flat-band parameters for p-channel (n-subst)
©rlc L25-21Apr2011
16
Typical fms values Fig 10.15* fms (V) NB (cm-3) ©rlc L25-21Apr2011
17
Flat band with oxide charge (approx. scale)
SiO2 p-Si +<--Vox-->- q(Vox) Ec,Ox q(ffp-cox) q(fm-cox) Ex Eg,ox~8eV EFm Ec EFi EFp q(VFB) Ev VFB= VG-VB, when Si bands are flat Ev ©rlc L25-21Apr2011
18
Inversion for p-Si Vgate>VTh>VFB
Vgate> VFB EOx,x> 0 e- e- e- e- e- Depl Reg Acceptors Vsub = 0 ©rlc L25-21Apr2011
19
Approximation concept “Onset of Strong Inv”
OSI = Onset of Strong Inversion occurs when ns = Na = ppo and VG = VTh Assume ns = 0 for VG < VTh Assume xdepl = xd,max for VG = VTh and it doesn’t increase for VG > VTh Cd,min = eSi/xd,max for VG > VTh Assume ns > 0 for VG > VTh ©rlc L25-21Apr2011
20
MOS Bands at OSI p-substr = n-channel
Fig 10.9* 2q|fp| qfp xd,max ©rlc L25-21Apr2011
21
Computing the D.R. W and Q at O.S.I.
Ex Emax x ©rlc L25-21Apr2011
22
Calculation of the threshold cond, VT
©rlc L25-21Apr2011
23
Equations for VT calculation
©rlc L25-21Apr2011
24
Fully biased n-MOS capacitor
VG Channel if VG > VT VS VD EOx,x> 0 n+ e- e- e- e- e- e- n+ p-substrate Vsub=VB Depl Reg Acceptors y ©rlc L25-21Apr2011 L
25
MOS energy bands at Si surface for n-channel
Fig 8.10** ©rlc L25-21Apr2011
26
Computing the D.R. W and Q at O.S.I.
Ex Emax x ©rlc L25-21Apr2011
27
Q’d,max and xd,max for biased MOS capacitor
Fig 8.11** xd,max (mm) ©rlc L25-21Apr2011
28
Fully biased n- channel VT calc
©rlc L25-21Apr2011
29
n-channel VT for VC = VB = 0
Fig 10.20* ©rlc L25-21Apr2011
30
Fully biased p- channel VT calc
©rlc L25-21Apr2011
31
p-channel VT for VC = VB = 0
Fig 10.21* ©rlc L25-21Apr2011
32
n-channel enhancement MOSFET in ohmic region
0< VT< VG Channel VS = 0 0< VD< VDS,sat EOx,x> 0 n+ e-e- e- e- e- n+ Depl Reg p-substrate Acceptors VB < 0 ©rlc L25-21Apr2011
33
Conductance of inverted channel
Q’n = - C’Ox(VGC-VT) n’s = C’Ox(VGC-VT)/q, (# inv elect/cm2) The conductivity sn = (n’s/t) q mn G = sn(Wt/L) = n’s q mn (W/L) = 1/R, so I = V/R = dV/dR, dR = dL/(n’sqmnW) ©rlc L25-21Apr2011
34
Basic I-V relation for MOS channel
©rlc L25-21Apr2011
35
I-V relation for n-MOS (ohmic reg)
ID non-physical ID,sat saturated VDS,sat VDS ©rlc L25-21Apr2011
36
References * Semiconductor Physics & Devices, by Donald A. Neamen, Irwin, Chicago, 1997. **Device Electronics for Integrated Circuits, 2nd ed., by Richard S. Muller and Theodore I. Kamins, John Wiley and Sons, New York, 1986 ©rlc L25-21Apr2011
37
Computing the D.R. W and Q at O.S.I.
Ex Emax x ©rlc L25-21Apr2011
Similar presentations
© 2025 SlidePlayer.com. Inc.
All rights reserved.