Presentation is loading. Please wait.

Presentation is loading. Please wait.

Myeong-Gu Park (Kyungpook National University, KOREA)

Similar presentations


Presentation on theme: "Myeong-Gu Park (Kyungpook National University, KOREA)"β€” Presentation transcript:

1 Myeong-Gu Park (Kyungpook National University, KOREA)
Accretion onto Black Holes with Outflow Myeong-Gu Park (Kyungpook National University, KOREA) July 4, 2017 ICGAC-XIII/IK15 Ewha Womans U.

2 Definitions 𝑀 𝐸 ≑ 𝐿 𝐸 / 𝑐 2 =2.2Γ— 10 βˆ’9 𝑀 𝑀 𝑆𝑒𝑛 Msun/yr
Efficiency: πœ€β‰‘ 𝐿 𝑀 𝑐 2 Eddington luminosity: 𝐿 𝐸 = 4πœ‹πΊπ‘€ π‘š 𝑝 𝑐 𝜎 π‘‡β„Ž =1.3Γ— 𝑀 𝑀 𝑆𝑒𝑛 ergs/s Eddington mass accretion rate: 𝑀 𝐸 ≑ 𝐿 𝐸 / 𝑐 2 =2.2Γ— 10 βˆ’9 𝑀 𝑀 𝑆𝑒𝑛 Msun/yr Luminosity: 𝑙≑𝐿/𝐿 𝐸 Mass accretion rate: π‘š ≑ 𝑀 / 𝑀 𝐸

3 Efficiency

4 πœ€~1 πœ€~0

5 Efficiency of Accretion
onto WD/NS energy emission efficiency fixed by the hard surface of the star πœ€~0.1 ~ 10% of rest mass energy of accreted matter should be emitted regardless of how matter falls in 𝐿< 𝐿 𝐸𝑑𝑑 means 𝑀 < πœ€ βˆ’1 𝑀 𝐸𝑑𝑑 . onto Black Holes no hard surface 0β‰€πœ€β‰€0.1 Efficiency depends on the details of how matter falls in 𝐿< 𝐿 𝐸𝑑𝑑 does not mean 𝑀 < πœ€ βˆ’1 𝑀 𝐸𝑑𝑑 .

6 Mass Accretion Rate

7 How much can a black hole eat?
π‘Ÿ 𝐡 ≑ 𝐺𝑀 𝑐 𝑠,∞ 2 Black Hole in a Uniform Medium

8 Bondi flow Bondi (1952) Zero angular momentum Polytropic EOS Inviscid
π‘Ÿ 𝐡 ≑ 𝐺𝑀 𝑐 𝑠,∞ 2

9 Critical/Sonic Point 𝑑 𝑣 π‘Ÿ π‘‘π‘Ÿ = 𝐹( 𝑣 π‘Ÿ ,π‘Ÿ,Ξ©,𝛼, 𝑐 𝑠 , π‘ž + , π‘ž βˆ’ ,…) 𝑣 π‘Ÿ 2 βˆ’ 2𝛾 𝛾+1 𝑐 𝑠 2

10 Bondi solutions 𝑀 π΅π‘œπ‘›π‘‘π‘– =πœ†4πœ‹ 𝐺 2 𝑀 2 𝜌 ∞ 𝛾 3/2 𝑐 𝑠,∞ 3/2 Supersonic
Transonic Non-physical Subsonic 𝑀 π΅π‘œπ‘›π‘‘π‘– =πœ†4πœ‹ 𝐺 2 𝑀 2 𝜌 ∞ 𝛾 3/2 𝑐 𝑠,∞ 3/2

11 Bondi flow Transonic flow subsonic – sonic point – supersonic nearly free-fall inside Bondi radius π‘Ÿ 𝐡 Mass accretion rate depends only the density and temperature of gas at infinity Bondi rate 𝑀 π΅π‘œπ‘›π‘‘π‘– =πœ† 𝛾 βˆ’3/2 4πœ‹ π‘Ÿ 𝐡 2 𝜌 ∞ 𝑐 𝑠,∞ =πœ†4πœ‹ 𝐺 2 𝑀 2 𝜌 ∞ 𝛾 3/2 𝑐 𝑠,∞ 3/2 10 Msun BH in 1 cm-3, 102 K ISM accretes ~10-10 Msun/yr (too) widely used

12 Disk accretion Thin Disk Slim Disk Advection Dominated Accretion Flow
Radiatively Inefficient Accretion Flow

13 Rotating viscous accretion flow
What is the nature of the accretion flow with angular momentum? 0≀𝑗 π‘œπ‘’π‘‘ ≲ 𝑗 πΎπ‘’π‘π‘™π‘’π‘Ÿ ( π‘Ÿ π‘œπ‘’π‘‘ ) What would be the mass accretion rate of these accretion flow? 𝑀 = 𝑀(𝑀, 𝜌 ∞ , 𝑇 ∞ , 𝑗 π‘œπ‘’π‘‘ )

14 Equations (Park 2009) Mass conservation Radial momentum
Angular momentum Energy equation viscous dissipation relativistic bremsstrahlung cooling

15 Critical/Sonic Point 𝑑 𝑣 π‘Ÿ π‘‘π‘Ÿ = 𝐹( 𝑣 π‘Ÿ ,π‘Ÿ,Ξ©,𝛼, 𝑐 𝑠 , π‘ž + , π‘ž βˆ’ ,…) 𝛾+1 π›Ύβˆ’1 +𝑂( 𝛼 2 ) 𝑣 π‘Ÿ 2 βˆ’ 2𝛾 π›Ύβˆ’1 +𝑂( 𝛼 2 ) 𝑐 𝑠 2

16 Method of Finding Solutions
Find a transonic solution for given 𝑀, 𝛼, 𝜌 ∞ , 𝑇 ∞ , 𝑗 π‘œπ‘’π‘‘ Shooting method Mass accretion rate is an eigenvalue.

17 Flow Properties high 𝒋 𝒐𝒖𝒕 low 𝒋 𝒐𝒖𝒕

18 Mass Accretion Rate For π‘Ÿ π‘œπ‘’π‘‘ = π‘Ÿ 𝐡 𝑀 𝑀 𝐡 β‰…9𝛼 𝑗 π‘œπ‘’π‘‘ 𝑗 𝐡 βˆ’1 log 𝑀 𝑀 𝐡

19 Park (2009) Mass Accretion Rate of Rotating Viscous Accretion Flow
depends on the angular momentum of the surrounding gas and can be much smaller than the Bondi rate roughly proportional to 𝛼 and inversely proportional to the angular momentum of the gas

20 Narayan & Fabian (2011) Bondi flow from a slowly rotating hot atmosphere Solutions have similar properties.

21 discrepancy? 𝐿≑ 𝑙 π‘œπ‘’π‘‘ 𝑙 π‘šπ‘ 

22 Generalized Bondi Flow
Rotating viscous polytropic accretion flow Better comparison with Bondi flow Slim disk approximation Flow properties and mass accretion rate dependence on 𝛼, 𝑗 π‘œπ‘’π‘‘ , π‘Ÿ π‘œπ‘’π‘‘

23 Equations Mass conservation 𝑀 =βˆ’4πœ‹π»πœŒ 𝑣 π‘Ÿ Radial momentum
Angular momentum Equation of State 𝑀 =βˆ’4πœ‹π»πœŒ 𝑣 π‘Ÿ 𝑣 π‘Ÿ 𝑑 𝑣 π‘Ÿ π‘‘π‘Ÿ + Ξ© 𝐾 2 βˆ’ Ξ© 2 π‘Ÿ+ 1 𝜌 𝑑𝑃 π‘‘π‘Ÿ =0 𝜌 𝑣 π‘Ÿ Ξ© π‘Ÿ 2 βˆ’ 𝑗 0 =βˆ’π›Όπ‘Ÿπ‘ƒ 𝑃= 𝑃 π‘œπ‘’π‘‘ 𝜌 𝜌 π‘œπ‘’π‘‘ 𝛾

24 Gravitational Potential
Boundary Conditions Outer boundary: π‘Ÿ π‘œπ‘’π‘‘ = π‘Ÿ 𝐡 gas density gas temperature gas specific angular momentum Inner boundary: π‘Ÿ 𝑖𝑛 =3 π‘Ÿ π‘†π‘β„Ž no torque condition (automatically satisfied) Gravitational Potential Paczynski-Wiita potential Ξ© 𝐾 2 π‘Ÿ ≑ 𝐺𝑀 π‘Ÿ π‘Ÿβˆ’ π‘Ÿ π‘†π‘β„Ž 2

25 Flow profiles

26 Dependence on π‘Ÿ 𝐡 (or 𝑇 π‘œπ‘’π‘‘ ) Dependence on viscosity parameter 𝛼
𝑀 𝑀 𝐡 β‰… 𝛼 𝑗 π‘œπ‘’π‘‘ 𝑗 𝐡 βˆ’1

27 Dependence adiabatic index 𝛾
𝑀 / 𝑀 𝐡 insensitive to 𝛾.

28 Outflows Inflow-outflow by Radiation driven outflow (WADAF, WCDAF)
hydrodynamic process magnetic process radiative process Radiation driven outflow (WADAF, WCDAF) Park & Ostriker 2001, 2007 ADiabatic Inflow-Outflow Solution (ADIOS) Blandford & Begelman 1999 simple scaling assumption Numerical Simulations Li, Ostriker & Sunyaev 2013

29 Equations for Accretion with Outflow
Blanford & Begelman (1999) Simple scaling model for Advection-Dominated Inflow-Outflow Solutions (ADIOS) Mass conservation Radial momentum Angular momentum Equation of State 𝑀 π‘Ÿ =βˆ’4πœ‹π»πœŒ 𝑣 π‘Ÿ = 𝑀 π‘œπ‘’π‘‘ π‘Ÿ π‘Ÿ π‘œπ‘’π‘‘ 𝑝 𝑣 π‘Ÿ 𝑑 𝑣 π‘Ÿ π‘‘π‘Ÿ + Ξ© 𝐾 2 βˆ’ Ξ© 2 π‘Ÿ+ 1 𝜌 𝑑𝑃 π‘‘π‘Ÿ =0 βˆ’ πœŒπ‘£ π‘Ÿ (1βˆ’ πœ† 𝐡𝐡 )Ξ© π‘Ÿ 2 βˆ’ 𝑗 0 π‘Ÿ 𝑝 =βˆ’π›Όπ‘Ÿπ‘ƒ 𝑃= 𝑃 π‘œπ‘’π‘‘ 𝜌 𝜌 π‘œπ‘’π‘‘ 𝛾

30 Flow profiles magnetic wind gas outflow 𝑝=0, πœ† 𝐡𝐡 =1/2
𝑝=0, πœ† 𝐡𝐡 =1/2 𝑝=3/4, πœ† 𝐡𝐡 =1/2

31 Mass accretion rate No dependence on mass loss parameter 𝑝.
Dependence on angular momentum loss parameter πœ† 𝐡𝐡 : 𝑀 𝐴𝐷𝐼𝑂𝑆 𝑀 𝐴𝐷𝐴𝐹 ~ 1βˆ’ πœ† 𝐡𝐡 βˆ’1

32 Implications Outflows are ubiquitous in hot accretion disk flow.
Mass infall rate (at outer boundary) can increase if outflow carries angular momentum. However, the actual mass accreted into the horizon can be much smaller than the mass infall rate. Blandford & Begelman (1999): 𝑀 π‘Žπ‘π‘ ~ π‘Ÿ 𝑖𝑛 π‘Ÿ π‘œπ‘’π‘‘ 𝑝 𝑀 π‘–π‘›π‘“π‘Žπ‘™π‘™ Li, Ostriker & Sunyaev (2013): 𝑀 π‘Žπ‘π‘ ~ 𝑀 π‘–π‘›π‘“π‘Žπ‘™π‘™ How can black holes grow so fast if outflows prevent them to eat?


Download ppt "Myeong-Gu Park (Kyungpook National University, KOREA)"

Similar presentations


Ads by Google