Download presentation
Presentation is loading. Please wait.
Published byThomasine Hawkins Modified over 6 years ago
1
Myeong-Gu Park (Kyungpook National University, KOREA)
Accretion onto Black Holes with Outflow Myeong-Gu Park (Kyungpook National University, KOREA) July 4, 2017 ICGAC-XIII/IK15 Ewha Womans U.
2
Definitions π πΈ β‘ πΏ πΈ / π 2 =2.2Γ 10 β9 π π ππ’π Msun/yr
Efficiency: πβ‘ πΏ π π 2 Eddington luminosity: πΏ πΈ = 4ππΊπ π π π π πβ =1.3Γ π π ππ’π ergs/s Eddington mass accretion rate: π πΈ β‘ πΏ πΈ / π 2 =2.2Γ 10 β9 π π ππ’π Msun/yr Luminosity: πβ‘πΏ/πΏ πΈ Mass accretion rate: π β‘ π / π πΈ
3
Efficiency
4
π~1 π~0
5
Efficiency of Accretion
onto WD/NS energy emission efficiency fixed by the hard surface of the star π~0.1 ~ 10% of rest mass energy of accreted matter should be emitted regardless of how matter falls in πΏ< πΏ πΈππ means π < π β1 π πΈππ . onto Black Holes no hard surface 0β€πβ€0.1 Efficiency depends on the details of how matter falls in πΏ< πΏ πΈππ does not mean π < π β1 π πΈππ .
6
Mass Accretion Rate
7
How much can a black hole eat?
π π΅ β‘ πΊπ π π ,β 2 Black Hole in a Uniform Medium
8
Bondi flow Bondi (1952) Zero angular momentum Polytropic EOS Inviscid
π π΅ β‘ πΊπ π π ,β 2
9
Critical/Sonic Point π π£ π ππ = πΉ( π£ π ,π,Ξ©,πΌ, π π , π + , π β ,β¦) π£ π 2 β 2πΎ πΎ+1 π π 2
10
Bondi solutions π π΅ππππ =π4π πΊ 2 π 2 π β πΎ 3/2 π π ,β 3/2 Supersonic
Transonic Non-physical Subsonic π π΅ππππ =π4π πΊ 2 π 2 π β πΎ 3/2 π π ,β 3/2
11
Bondi flow Transonic flow subsonic β sonic point β supersonic nearly free-fall inside Bondi radius π π΅ Mass accretion rate depends only the density and temperature of gas at infinity Bondi rate π π΅ππππ =π πΎ β3/2 4π π π΅ 2 π β π π ,β =π4π πΊ 2 π 2 π β πΎ 3/2 π π ,β 3/2 10 Msun BH in 1 cm-3, 102 K ISM accretes ~10-10 Msun/yr (too) widely used
12
Disk accretion Thin Disk Slim Disk Advection Dominated Accretion Flow
Radiatively Inefficient Accretion Flow
13
Rotating viscous accretion flow
What is the nature of the accretion flow with angular momentum? 0β€π ππ’π‘ β² π πΎπππππ ( π ππ’π‘ ) What would be the mass accretion rate of these accretion flow? π = π(π, π β , π β , π ππ’π‘ )
14
Equations (Park 2009) Mass conservation Radial momentum
Angular momentum Energy equation viscous dissipation relativistic bremsstrahlung cooling
15
Critical/Sonic Point π π£ π ππ = πΉ( π£ π ,π,Ξ©,πΌ, π π , π + , π β ,β¦) πΎ+1 πΎβ1 +π( πΌ 2 ) π£ π 2 β 2πΎ πΎβ1 +π( πΌ 2 ) π π 2
16
Method of Finding Solutions
Find a transonic solution for given π, πΌ, π β , π β , π ππ’π‘ Shooting method Mass accretion rate is an eigenvalue.
17
Flow Properties high π πππ low π πππ
18
Mass Accretion Rate For π ππ’π‘ = π π΅ π π π΅ β
9πΌ π ππ’π‘ π π΅ β1 log π π π΅
19
Park (2009) Mass Accretion Rate of Rotating Viscous Accretion Flow
depends on the angular momentum of the surrounding gas and can be much smaller than the Bondi rate roughly proportional to πΌ and inversely proportional to the angular momentum of the gas
20
Narayan & Fabian (2011) Bondi flow from a slowly rotating hot atmosphere Solutions have similar properties.
21
discrepancy? πΏβ‘ π ππ’π‘ π ππ
22
Generalized Bondi Flow
Rotating viscous polytropic accretion flow Better comparison with Bondi flow Slim disk approximation Flow properties and mass accretion rate dependence on πΌ, π ππ’π‘ , π ππ’π‘
23
Equations Mass conservation π =β4ππ»π π£ π Radial momentum
Angular momentum Equation of State π =β4ππ»π π£ π π£ π π π£ π ππ + Ξ© πΎ 2 β Ξ© 2 π+ 1 π ππ ππ =0 π π£ π Ξ© π 2 β π 0 =βπΌππ π= π ππ’π‘ π π ππ’π‘ πΎ
24
Gravitational Potential
Boundary Conditions Outer boundary: π ππ’π‘ = π π΅ gas density gas temperature gas specific angular momentum Inner boundary: π ππ =3 π ππβ no torque condition (automatically satisfied) Gravitational Potential Paczynski-Wiita potential Ξ© πΎ 2 π β‘ πΊπ π πβ π ππβ 2
25
Flow profiles
26
Dependence on π π΅ (or π ππ’π‘ ) Dependence on viscosity parameter πΌ
π π π΅ β
πΌ π ππ’π‘ π π΅ β1
27
Dependence adiabatic index πΎ
π / π π΅ insensitive to πΎ.
28
Outflows Inflow-outflow by Radiation driven outflow (WADAF, WCDAF)
hydrodynamic process magnetic process radiative process Radiation driven outflow (WADAF, WCDAF) Park & Ostriker 2001, 2007 ADiabatic Inflow-Outflow Solution (ADIOS) Blandford & Begelman 1999 simple scaling assumption Numerical Simulations Li, Ostriker & Sunyaev 2013
29
Equations for Accretion with Outflow
Blanford & Begelman (1999) Simple scaling model for Advection-Dominated Inflow-Outflow Solutions (ADIOS) Mass conservation Radial momentum Angular momentum Equation of State π π =β4ππ»π π£ π = π ππ’π‘ π π ππ’π‘ π π£ π π π£ π ππ + Ξ© πΎ 2 β Ξ© 2 π+ 1 π ππ ππ =0 β ππ£ π (1β π π΅π΅ )Ξ© π 2 β π 0 π π =βπΌππ π= π ππ’π‘ π π ππ’π‘ πΎ
30
Flow profiles magnetic wind gas outflow π=0, π π΅π΅ =1/2
π=0, π π΅π΅ =1/2 π=3/4, π π΅π΅ =1/2
31
Mass accretion rate No dependence on mass loss parameter π.
Dependence on angular momentum loss parameter π π΅π΅ : π π΄π·πΌππ π π΄π·π΄πΉ ~ 1β π π΅π΅ β1
32
Implications Outflows are ubiquitous in hot accretion disk flow.
Mass infall rate (at outer boundary) can increase if outflow carries angular momentum. However, the actual mass accreted into the horizon can be much smaller than the mass infall rate. Blandford & Begelman (1999): π πππ ~ π ππ π ππ’π‘ π π ππππππ Li, Ostriker & Sunyaev (2013): π πππ ~ π ππππππ How can black holes grow so fast if outflows prevent them to eat?
Similar presentations
© 2024 SlidePlayer.com. Inc.
All rights reserved.