Download presentation
Presentation is loading. Please wait.
1
Electromagnetic Radiation (Light)
A source of light produces packets of energy called “photons” Each packet has a well defined wavelength (which we perceive as color at visible wavelengths), the separation between wavecrests of the electromagnetic wave.
2
Sources of Light vs. Reflected Light
The vast majority of the things we see are made visible by reflected light originating from one or more sources of light.
3
Sources of Light vs. Reflected Light
The Sun is the primary light source illuminating Solar System objects.
4
Sources of Light vs. Reflected Light
The Moon, planets, asteroids, etc. “shine” by reflected sunlight.
5
Electromagnetic Radiation (Light)
A source of light produces packets of energy called “photons” Each packet has a well defined wavelength (which we perceive as color at visible wavelengths).
6
Wavelength Wavelength alone distinguishes types of light
At visible wavelengths – short wavelengths are blue; long are red Wavelength, color, and energy of a photon are all the same thing
7
Wavelength Wavelength alone distinguishes types of light
At visible wavelengths – short wavelengths are blue; long are red Wavelength, color, and energy of a photon are all the same thing Short wavelength photons (the “bluer” ones) carry more energy than long wavelength photons (the “redder” ones). Start thinking, now, about “blue” and “red” being directions in the spectrum rather than absolutes “toward the blue...” = “toward shorter wavelengths”
8
The Electromagnetic Spectrum
Wavelength alone distinguishes types of light Visible light covers a tiny range of possible wavelengths We have used technology to make other wavelengths “visible” defining, in the process new regions of the spectrum. Radio, Infrared, Visible, Ultraviolet, X-ray, and Gamma-ray are all forms of light of different wavelength (here from long wavelengths to short).
9
Spectra Light can be sorted and binned by wavelength. The resulting spectrum can be projected on a screen or plotted on a graph.
10
Two Fundamental Types of Spectra
Spectra can be from one of two classes Continuous – a smoothly varying distribution of all colors Discrete – emission (or absorption) at precise wavelengths Often a spectrum is a combination of both
11
The Solar Spectrum
12
Continuous Spectra: Thermal Radiation
Any hot object glows The hotter the object the brighter and bluer the glow
13
The Nature of Temperature
Temperature is a measure of the energy of motion of particles in a gas or in a solid. In a gas the particles (atoms or molecules) are independently flying about colliding with one another or with the walls of the chamber. At high temperature the particles move quickly. At low temperatures they are sluggish. In a solid the particles are vibrating in place. The lowest possible temperature is the point at which all thermal energy has been removed – absolute zero.
14
The Nature of Temperature
Temperature is a measure of the energy of motion of particles in a gas or in a solid. In a gas the particles (atoms or molecules) are independently flying about colliding with one another or with the walls of the chamber. At high temperature the particles move quickly. At low temperatures they are sluggish. In a solid the particles are vibrating in place. The lowest possible temperature is the point at which all thermal energy has been removed – absolute zero.
15
Continuous Spectra: Thermal Radiation
Any hot object glows The hotter the object the brighter and bluer the glow
16
Continuous Spectra: Thermal Radiation
Dense spheres of gas (stars) are good approximations to blackbodies as well. The hot stars below are blue. Cooler ones are yellow and red.
17
Continuous Spectra: Thermal Radiation
The equations below quantitatively summarize the light-emitting properties of solid objects. The hotter the object the “bluer” the glow. The Sun (6000K) peaks in the middle of the visible spectrum (0.5 micrometers / 500 nanometers) Room temperature objects (300K) peak deep in the infrared (10 um). The hotter the object the “brighter” the glow. The energy emitted from each square centimeter of the surface of a hot object increases as the fourth power of the temperature. Double the temperature and the emission goes up 16 times!
18
Sunspots and Thermal Radiation
Sunspots are relatively cooler regions of the Sun's 6000K surface. Being only about 1000K cooler than their surroundings, they do glow brightly, but due to the strong, T4, dependence of a hot solid object's brightness on its temperature they appear dark.
19
Spectral Line Emission/Absorption
Individual atoms produce/absorb light only at precise discrete wavelengths/colors (or specifically at certain exact energies).
20
Spectral Line Emission/Absorption
This property arises from the discrete nature of electronic “orbits” in atoms. Electrons can only be in configurations that have a specific energy. Jumping between these configurations (higher to lower energy) emits light. A photon of exactly the right energy can kick an electron from a lower to higher energy.
21
Spectral Line Emission/Absorption
This property arises from the discrete nature of electronic “orbits” in atoms. Electrons can only be in configurations that have a specific energy. Jumping between these configurations (higher to lower energy) emits light. Conversely, a photon of exactly the right energy can kick an electron from a lower to higher energy.
22
Spectral Line Emission/Absorption
This property arises from the discrete nature of electronic “orbits” in atoms. Electrons can only be in configurations that have a specific energy. Jumping between these configurations (higher to lower energy) emits light. A photon of exactly the right energy can kick an electron from a lower to higher energy.
23
Spectral Line Emission/Absorption
This property arises from the discrete nature of electronic “orbits” in atoms. Electrons can only be in configurations that have a specific energy. Jumping between these configurations (higher to lower energy) emits light. A photon of exactly the right energy can kick an electron from a lower to higher energy.
24
Spectral Line Emission/Absorption
Spectral lines can reveal the elemental content of a planet or star's atmosphere. Line intensity reveals both the quantity of the element as well as the temperature.
25
Spectral Line Emission/Absorption
Spectral line absorption arises when light from a continuous source passes through a cold gas. The gas atoms selectively remove (actually scatter) specific colors/energies.
26
The Doppler Shift The observed wavelength of a spectral line depends on the velocity of the source toward or away from the observer. The amount of the shift is proportional to the object's velocity relative to the speed of light (so typically the shift is tiny but measurable).
27
The Doppler Shift Objects approaching an observer have wavelengths artificially shifted toward shorter wavelengths – a blueshift. Objects moving away toward longer wavelengths – a redshift Note that these are directions in the electromagnetic spectrum, not absolute colors.
28
The Doppler Shift Using the Doppler Shift we can measure the subtle motions (towards or away from us) of stars, galaxies and interstellar gas without ever seeing actual movement!
Similar presentations
© 2025 SlidePlayer.com. Inc.
All rights reserved.