Presentation is loading. Please wait.

Presentation is loading. Please wait.

Mechanical System For AL-Rehan Hospital

Similar presentations


Presentation on theme: "Mechanical System For AL-Rehan Hospital"— Presentation transcript:

1 Mechanical System For AL-Rehan Hospital
Supervisor Students Dr. EYAD ASSAF Muhammad Shalan Muhammad Jitan JehaD Odeha JehaD Zuhd

2 Objective The objective of this project is to design Conventional (HVAC) System (Fan coil units with chiller and Boiler ) for AL-Rehan Hospital. In addition with all recommended mechanical systems that should contain like (potable water, drainage, medical gases and fire fighting) systems.

3 HVAC HVAC (heating, Ventilation, and Air conditioning) is the technology of indoor and automotive environmental comfort. HVAC system design is a major sub discipline of mechanical engineering, based on the principles of thermodynamics, fluid mechanics, and heat transfer. Also the mechanical systems are to be introduced in our research including potable, drainage, firefighting and medical gases.

4 Location Building Description Country: Palestine . City: Ramallah
Region: Dahyet Al-Rehan. Elevation: 800 m above sea level. Latitude: 32 N. Wind’s speed in Ramallah is above 5 m/s.

5 Al-Rehan Hospital consist of tenth floor ,four Basement Floor , Ground Floor and Five Up Floor and each Floor has approximately 1500 m^2

6 Inside and Outside Design Conditions
Parameter Tin To Tun Tg Φin Φout Win Wout Winter 22 4.7 13 9.7 50% 70% 8.4 3.9 Summer 24 30 28 29 52% 13.7

7 Overall Heat Transfer coefficient,Uoverall
Overall heat transfer coefficient depends on the construction of the unit. To find the overall heat transfer coefficient , the construction was taking in consideration because Uoverall control with the quantity of losses by wall , ceiling , ground , windows and doors. Uoverall is given by: U= 1/Rtot R tot = Ri + R + Ro R= ∑ x/K

8 External walls construction
composition thickness K(w/m.C) R th firm stone 0.1 2.2 0.0455 concrete ( light ) 1.75 0.0571 insulation (polystyrene) 0.03 0.04 0.7500 cement brick(air gap) 0.72 0.1389 cement plaster 0.02 1.2 0.0167 sum 0.35 1.0082 Ri 0.12 Ro Ri = 0.12 m2.C\W Ro= 0.03 m2.C\W Rtot= Ri+Rw+Ro Rtot= = (m^2).C/W U= W/(m^2).C

9 Internal walls construction
Material Thickness (m) Thermal conductivity "K"(W/m.C’’) Thermal resistance "R" (m2.C/W) Plaster 0.02 1.2 Block 0.1 0.72 Sum 0.14 Ri = 0.12 m2.C\W Ro= 0.03 m2.C\W Rtot= Ri+Rw+Ro Rtot= = (m^2).C/W U= W/(m^2).C

10 insulation (polystyrene)
Ceiling Construction composition thickness K(w/m.c) R th asphalt 0.02 0.8 0.0250 concrete ( light ) 0.05 1.75 0.0286 insulation (polystyrene) 0.03 0.04 0.7500 0.0171 cement brick(air gap) 0.17 0.72 0.2361 cement plaster 1.2 0.0167 sum 0.32 1.0735 Ri 0.1 Ro Ri = 0.12 m2.C\W Ro= 0.03 m2.C\W Rtot= Ri+Rw+Ro Rtot= = (m^2).C/W U= W/(m^2).C

11 Windows and Doors U overall for windows and doors taken directly from energy efficient building code as follow: Windows double glasses with aluminum material type, wind speed more than 5 m/s Uwindow = 3.5 W/m2.C. Doors with wood material type without storm door , wind velocity more than 5 m/s Udoor = 2.4 W/m2.C

12 Overall heat transfer coefficient (w/m2.k)
Summary The value of the overall heat transfer coefficient for each element construction Type Overall heat transfer coefficient (w/m2.k) External Walls 0.8634 Internal Walls 2.4259 Ceiling Windows 3.5 Doors 2.4

13 Heating Load Calculation
PROCEDURES Select inside design condition Temperature, relative humidity(Tin, Φin). Select outside design condition Temperature, relative humidity(Tout, Φout). Select unconditioned temperature(Tun). Find over all heat transfer coefficient Uo for wall, ceiling, floor, door, windows, below grade. Find area of wall, ceiling, floor, door, windows, below grade. Find Qs conduction. Find V inf , V vent . Find Qs, QL vent, inf. Find Q domestic hot water. Find Q boiler.

14 EQUATIONS Q = U* A* ( Ti - To ) Vvent = n * value of ventilation
Vinf = (ACH * inside volume *1000) /3600 Qs)vent , inf= 1.2 Vvent,inf*(Ti-To) Ql)vent , inf = 3 Vvent,inf*(Wi-Wo). Qw = (Mw *cp*(Th – Tc ))/∆t Unconditioned Temperature In summer Tun = Ti+2/3*( To - Ti ) Unconditioned Temperature In winter Tun = Ti+0.5*( Ti - To )

15 Sample Calculation Single Room ( 1 ) Specification
Area of outside wall = 14 m² Area of unconditioned wall = 32.2 m² Area of window is = 1.8 m² Ceiling area = 18.6 m²

16 Conduction heat gain Qs = U*A*∆T Q.ext = *14* = Watt. Q. un = *32.2*8.65 = Watt. Q cel. = *18.6*17.3 = Watt. Qs.cond = Q.ext + Q.un + Q.cilling Qs.cond= Watt. Ventilation and Infiltration heat gain Q.s.ven =1.2*5*18.6 *17.3 = Watt Q.tot = = Watt

17 Room Qs, cond. (W) Qs, vent. (W) Q tot ( W ) Single Room (1) Single Room (2) 1972.2 Single Room (3) 2179.8 Single Room (4) Single Room (5) 1868.4 Single Room (6) Single Room (7) Single Room (8) 1764.6 Single Room (9) 3217.8 Single Room (10) 1349.4 Single Room (11) Double Room(1) Double Room(2) Double Room(3) 2439.3 Double Room(4) Double Room(5) Double Room(6) Double Room(7) Double Room(8) Double Room(9) Double Room(10) Double Room(11) Double Room(12) Double Room(13) Double Room(14) Double Room(15) Double Room(16) Main Carador (1) Main Carador (2) 9861 Small Corridor Doctor Office(1) 830.4 Doctor Office (2) 1557 Lounge 1141.8 Lounge (1) Male Change Female Change 1245.6 Nurse Station 34.634 Waiting Suite Room 11418 Clean & Dirty UT. Sum

18 Total Heating Loads

19 Boiler Selection Boiler specification
Domestic hot water load KW Heating Load KW Boiler Capacity = KW Annual fuel consumption of diesel is cubic meter per year .

20 From Obrien boilers Company Catalogue
we chose REX K120 F with capacity of 1200 KW

21 Pump Specification

22 Pump Selection Required pump for boiler have the following specification pump head PSI . pump flow rate L/s. From WILO catalog we chose NL 50/ Hz series .

23 Expansion Tank From Wessels Company Catalogue depending on pump flow rate(20.17 L/s) (319.7 GPM )we select TXA 1400

24

25 Coaling Load Calculation
EQUATIONS For Ceiling: Q=U*A*(CLTD)corr (CLTD)corr = (CLTD + LM) K + (25.5 – Ti )+ (To – 29.4) CLTD: cooling load factor K:color factor K=1 dark color K=0.5 light color For Walls: Q=U*A*(CLTD)corr (CLTD)corr =(CLTD + LM) K + (25.5 – Ti )+ (To – 29.4) K=1 dark color K=0.83 medium color K=0.5 light color

26 For Glass Heat transmitted through glass Q=A*(SHG)*(SC)*(CLF) SHG: solar heat gain SC: shading coefficient CLF: cooling load factor Convection heat gain Q=U*A*(CLTD)corr For people Qs=qs*n*CLF qL=qL*n Qs,QL: sensible and latent heat gain qs,qL: sensible and latent gains per person n: number of people CLF: cooling load factor For lighting Qs=W*CLF W:lighting capacity: (watts) For equipments Qs=qs*CLF QL=qL

27

28 Sample Calculations For Single Room (1)
Area of outside wall = 14 m² Area of unconditioned wall = 32.2 m² Area of window is = 1.8 m² Ceiling area = 18.6 m² Sensible and latent heat gain for one person from table (A-16). Qs = 71.5 W QL= 57 W Sensible heat gain Qs in, wall = U x A x (CLTD) correct = W Transmission heat gain (window) = W Convection heat gain = U*A*CLTD.corr = W

29 Heat load due to equipment
Convection heat gain U*A*CLTDcorr = W Load from ventilation and infiltration Qs vent/inf = 1.2*Vvent* ∆t = 1.2*75.8*7.4 = W QL vent = 3*Vvent*(Wi-Wo) = 3*75.8*6.5 = W Heat load due to people Qs = qs*n*CLF = 70*1*0.84 = 62.3 W Ql = ql*n = 44*1 = 44 W Heat load due to lighting Qs/l = Aroom*CLF= 279 * 0.85 = W Heat load due to equipment Qs = 522 W QL = 0 W Total sensible load ∑Qs = W Total latent load = ∑Ql = W Total load = W

30 Total heat loss for every room
Qs (W) Ql (W) V vent(L/S) total loss (W) Total loss (KW) single Room (1) 93 single Room (2) single Room (3) 106 single Room (4) single Room (5) single Room (6) single Room (7) single Room (8) 97 single Room (9) 158 single Room (10) 65 single Room (11) 115 Double Room(1) 118.5 Double Room(2) Double Room(3) 120 Double Room(4) 117.5 Double Room(5) 118 Double Room(6) 119 Double Room(7) 98 Double Room(8) 108.5 Double Room(9) 136.5 Double Room(10) Double Room(11) Double Room(12) Double Room(13) Double Room(14) Double Room(15) Double Room(16) main carador (1) 8212.5 475 main carador (2) 567.5 small corridor 724 40 doctor office(1) 942.35 56.5 doctor office (2) 76.5 lounge 9423.5 565 lounge (1) 80.5 male change 1042 60 female change 1280.5 75 nurse station waiting 9625 550 suite room 2619.8 162 clean & dirty UT. 96.5 Sum 6022

31 FLOOR Q total ( kW ) Mass Flow Rate(L/s) B4 59.1 B3 71.7 B2 157.16 B1 143.42 GF 172.69 1 130 2 152.89 3 116.2 4 5 150.7 SUM

32 Chiller Selection Building Load = 1270.06 kW OR 362.87 T.R
From PETRA Company we select APSa 385 – 3S AC1 50 Hz. with 385 Ton. Refrigeration cooling load capacity .

33 Pump Selection Friction loss = 66.17 PSI Fitting loss = 33.08 PSI
Head loss = PSI. Pump head = PSI Pump Flow rate = L/s From WILO catalog we select SCP 150/580HA series.

34 Pressure Tank Selection
From Wessels Company Catalogue depending on Pump flow rate (19.44 L/s) (308 GPM) the suitable pressure tank FXA-1200

35

36 Fan Coil Unit For Single Room (1) Cooling Load = 3.35 KW
V cir. = L/s V c.f.m = CFM From Petra Catalogue we select DCC 20 H/C 4Rows Model

37 F.C.U # Load (CFM) Model F.C 1 DCC 20 H/C 4Rows F.C 2 F.C 3 F.C 4 F.C 5 F.C 6 F.C 7 F.C 8 F.C 9 F.C 10 DCC 8 H/C 4Rows F.C 11 F.C 12 F.C 13 F.C 14 F.C 15 F.C 16 F.C 17 F.C 19 F.C 20 F.C 21 F.C 22 F.C 23 F.C 24 F.C 25 F.C 26 F.C 27 F.C 28 DCC 30 H/C 4Rows F.C 29 F.C 30 DCC 6 H/C 4Rows F.C 31 F.C 32 F.C 33 F.C 34 DCC 10 H/C 4Rows F.C 35 F.C 36 F.C 37 F.C 38 DCC 24 H/C 4Rows F.C 39

38 Pipe Sizing ( FCU 1) Supply Pipe sizing m = (Qs +Ql.) / (4180*6)
m = ( ) / (4180*6) = L/s Pressure drop assumption 400 pa/m. Preferred size at operating condition is 0.75 in

39 SHAFT ( 1 ) F.C.U Heat loss (W) m ( L/s) Friction Size ( in ) F.C 28 A 400 2 F.C 12 1.5 F.C 1 F.C 13 F.C 2 1.25 F.C 14 F.C 3 F.C 15 1 F.C 32 F.C 16 0.75

40 Duct Sizing ( FCU 1) Qt = 3.35 kw
V circulation air = Qt / 1.2 * (Tcir. – Ti) V circulation = 3.35 / (1.2* 10) = m3/ s Pressure drop = 0.55 pa / m velocity = 4.1 m / s A = 0.11 m2 D = m High = 0.3 m Width = m

41 F.C.U # Load (CFM) HIGHT A - B B - C C - D D - E E - F F - G G - H H - I F.C 1 0.3 0.425 0.275 0.2 F.C 2 F.C 3 0.45 0.325 F.C 4 F.C 5 F.C 6 F.C 7 F.C 8 F.C 9 0.625 0.5 0.375 F.C 10 F.C 11 0.475 0.35 F.C 12 0.525 0.4 F.C 13 F.C 14 F.C 15 F.C 16 F.C 17 F.C 19 F.C 20 F.C 21 0.55 F.C 22 F.C 23 F.C 24 F.C 25 F.C 26 F.C 27 F.C 28 0.875 0.775 0.65 0.25 F.C 29 1.025 0.9 0.53 0.28 F.C 30 0.225 F.C 31 F.C 32 F.C 33 0.675 F.C 34 F.C 35 F.C 36 F.C 37 F.C 38 0.725 0.6 F.C 39

42 Fresh Air Duct For single room ( 1 ) V.vent. = ( L/S/ Area ) * Area
Pressure drop = 0.55 pa / m velocity = 3 m / s A = m2 D = 0.2 m High = 0.2 m Width = m

43

44 SECTION V vent(L/S) SHAFT ( 1 ) PA/M HIGHT WIDTH A - B 1173.5 0.55 0.3
0.875 B - C 936 0.7 C - D 843 0.65 D - E 724.5 0.575 E - F 609.5 0.5 F - G 516.5 0.45 G - H 396.5 0.35 H - I 290.5 0.275 I - J 173 0.2 STATIC PRESSURE PA 13.75

45 Fresh Air Fan Selection
Fan specification Flow rate = L/s Static Pressure = pa From Rosenberg RoVent catalog we select DHAD series .

46 Exhaust Air Duct velocity = 2 m / s D = 0.136 m High = 0.2 m
V = ( A.C.H *Vin* 1000) / 3600 V = ( 10 * 3.5*3.1*1000 ) / 3600 V = 30 L/s/path. Pressure drop = 0.55 pa / m velocity = 2 m / s D = m High = 0.2 m Width = 0.75 m

47 SECTION V (L/S) PA/M HIGHT WIDTH A - B 210 0.55 0.2 0.325 B - C 180
C - D 150 0.25 D - E 120 0.225 E - F 90 0.175 F - G 60 0.125 G - H 30 0.75 STATIC PRESSURE PA 13.75

48 Exhaust Fan Selection Fan specification Flow rate = 210( L/s ).
Static Pressure = pa From Rosenberg RoVent catalog we select DHAD series .

49

50

51 Air Handling Unit Selection

52 For Operation Theaters in the First floor
Three O.T have Load of ( CFM). The other have load of ( CFM ). For Operation Theater in the Second floor Operation Theater load of (530.5 CFM) For Operation Theaters in the GF floor Operation Theater load of ( CFM) For Operation Theaters in the B1 floor Operation Theater load of ( CFM)

53 From PETRA Catalogue the minimum Available AHU Load is 1200 CFM
So we select PAH H C 12 C6 H4 X4

54 Plumbing System Potable Water No. of Fixture units is to be calculated to start sizing using special tables for potable design. For internal network plastic pipes to be used For external network steel pipes to be used

55 Sample Calculation

56 SINGLE ROOM (9) + DOUBLE ROOM 16
Space Name ( H.W.S ) F.U ( H.W.R ) F.U ( C.W.S ) F.U SINGLE ROOM (1&2) 12 7.2 22 SINGLE ROOM ( 3 ) 6 3.6 11 SINGLE ROOM (4&5) SINGLE ROOM ( 6 & 7) SINGLE ROOM (9) + DOUBLE ROOM 16 SINGLE ROOM (10) + DOUBLE ROOM ( 7 ) DOUBLE ROOM ( 1 & 2 ) DOUBLE ROOM ( 3 & 4 ) DOUBLE ROOM ( 5 & 6 ) + SUITE 18 10.8 33 DOUBLE ROOM ( 8 & 9 ) DOUBLE ROOM ( 10 & 11 ) DOUBLE ROOM ( 12 & 13 ) DOUBLE ROOM ( 14 & 15 ) WAITING AND LUNGE 1 MAIL CHANGE 16 9.6 26 F CHANGE Single Room (11) and Lounge(1)

57 Section ( H.W.S ( L/S ) SIZE (in) ( H.W.S ) ( H.W.R ) ( L/S )
Riser ( 1 ) MAIN LINE Size ( in ) ITEM TOTAL FIXTURE Flow Rate ( L/s ) SIZE ( in) Cold Water System 77 2.357 1.25 Hot Water System 42 1.724 Hot Water System Return 25.2 1.38 1 Section ( H.W.S ( L/S ) SIZE (in) ( H.W.S ) ( H.W.R ) ( L/S ) SIZE (in) ( H.W.R ) A - B 1.01 1 0.88 B - C 0.68 0.75 0.47 0.5 C - D D - E ( C.W.S ) ( L/S ) SIZE (in) ( C.W.S ) 1.288 0.965

58

59 Residual Pressure ( PSI )
FLOOR CWS ( F.U ) HWS ( F.U ) B4 21.5 16.5 B3 93 43 B2 108 48 B1 36.25 12.25 GF 172 21 1 133.5 43.5 2 197 57 3 350 194 4 5 SUM ( F.U ) 823.25 FLOW RATE ( L/s ) 19.438 SIZE ( IN ) 3.5 TANK SIZE Pump Specification Residual Pressure ( PSI ) Friction ( PSI ) Fitting ( PSI ) Head ( PSI ) Total Head ( PSI ) Flow Rate (L/S )

60 Pump Selection Cold Water Pump have the following specification :
Flow rate L/s Pump Head PSI From WILO Catalog we chose NL 50/ Hz series. Tank size Cubic meter for two operating hour per day .

61 Hot Water Pump have the following specification :
Flow rate ( L/s ) Pump Head ( PSI ). From WILO Catalog we chose BAC 70/135-3/2-Rseries. Tank size Cubic meter for two operating hour per day .

62 Pressure Tank Selection
From Wessels Company Catalogue depending on Pump flow rate (11.56 L/s) (183.2 GPM) we select TXA 800 .

63

64 Expansion Tank Selection
From Wessels Company Catalogue depending on Pump flow rate (19.44 L/s) (308 GPM) we select FXA-1200-WG.

65

66

67 Drainage System Number of fixtures is to be determined to start sizing for the stacks and horizontal branches using special tables

68 Water Closet ( Tank Type )
ITEM SIZE ( IN ) FIXTURE UNIT BATHTUB 1.5 2 FLOOR DRAIN ( 4 ) 4 6 LAVATORY 1.25 1 Water Closet ( Tank Type )

69 Black Water (W.C) STACK Size
Space Name Gray Water F.U Gray Water STACK Size Black Water (W.C) F.U Black Water (W.C) STACK Size SINGLE ROOM (1&2) 24 4 8 SINGLE ROOM ( 3 ) 15 3 SINGLE ROOM (4&5) 18 SINGLE ROOM ( 6 & 7) SINGLE ROOM (9) + DOUBLE ROOM 16 SINGLE ROOM (10) + DOUBLE ROOM ( 7 ) DOUBLE ROOM ( 1 & 2 ) DOUBLE ROOM ( 3 & 4 ) DOUBLE ROOM ( 5 & 6 ) + SUITE 27 12 DOUBLE ROOM ( 8 & 9 ) DOUBLE ROOM ( 10 & 11 ) DOUBLE ROOM ( 12 & 13 ) DOUBLE ROOM ( 14 & 15 ) WAITING AND LUNGE MAIL & Female CHANGE & Single Room (11) & Lounge(1) 81 20 TOTAL FIXTURE 369 124

70

71 FLOOR SHAFT 1 ( F.U ) SHAFT 2 ( F.U ) SHAFT 3 ( F.U ) SHAFT 4 ( FU ) B4 B3 12 112 66 36 B2 48 123 83 B1 52 18 GF 30 88 1 90 97 2 70 3 129 89 110 4 191 5 SUM 689 600 695 501 STA CK SIZE ( IN )

72 BUILDING DRAIN BETWEEN STAK
FU SIZE SHAFT 4 & 3 501 6 SHAFT 3 & 2 1196 8 SHAFT 2 & 1 1796 10 DRAIN 2485

73

74

75

76 Fire Fighting System Landing Valve and Cabinet
landing valve 2 ½ “ (NFPA code) cabinet ½ “ (NFPA code) Sprinklers system with heat and smoke detectors .

77 Landing Valve and Cabinet

78 Pressure Drop ( PSI/ft ) Path ( ft ) Pressure Drop ( PSI )
Pipe Size ( in ) Flow Rate ( GPM ) Pressure Drop ( PSI/ft ) Path ( ft ) Pressure Drop ( PSI ) 4 1000 0.2 32.8 6.56 750 0.1 82.984 8.2984 500 0.05 2.5 250 0.15 29.52 4.428 Pump Selection Residual Pressure ( PSI ) 100 Flow Rate ( G.p.m ) 1000 head ( PSI ) Head ( PSI ) Friction ( PSI ) Flow Rate ( L/S ) Fitting ( PSI ) head ( Kpa ) Total ( PSI )

79 Pump Selection Pump flow rate 1000 GPM. Pump head 213.87 PSI
For electric and diesel pump we select from WILO Company ( NPG A-110/2 ) series. For Jockey Pump have the following specification Jockey flow rate 100GPM. Jockey head PSI. From WILO Company we select TWI B series .

80 Pressure Tank Selection
From Wessels Company Catalogue depending on Pump flow rate (1000GPM) we select FXA-4000.

81

82 Tank Volume Tank Volume = ( 1000*3.78*60)/1000 = 226.8 (Cubic meter ).
tank sets beside the building .

83 Sprinklers

84 Residual Pressure( PSI )
Combustible Ceiling Covered Area Maximum Distance( m ) Light Hazardous 21 4.6 Residual Pressure( PSI ) Flow Rate ( gpm ) Duration Time ( s ) 15 60 NO. Sprinklers Pipe Size ( in ) 2 1 3 1.25 5 1.5 10 20 2.5 40 65 3.5 100 4 160 275 6

85 Pressure Drop ( PSI/ft )
NO. Sprinklers Pipe Size ( in ) Q ( gpm) Pressure Drop ( PSI/ft ) Path (ft) Pressure Drop ( PSI) 1 15 0.107 20.664 309.96 3 1.25 45 0.022 14.76 664.2 4 1.5 60 0.173 2.624 157.44 10 2 150 0.279 9.184 1377.6 11 2.5 165 0.142 7.216 14 210 0.2 7.544 17 255 0.316 5.248 20 300 0.427 4.264 1279.2 21 315 0.161 36 540 0.33 37.72 39 585 0.35 3.28 1918.8 3.5 675 0.37 5.576 3763.8 51 765 0.4 21.484 78 1170 0.25 114.8 134316

86 Residual Pressure ( PSI )
Pump Selection Residual Pressure ( PSI ) 15 Flow Rate ( gpm ) 1170 head ( PSI ) Friction ( PSI ) Flow Rate (L/S ) 63.96 Fitting ( PSI ) head ( Kpa ) Total ( PSI )

87

88

89

90 Medical Gases Medical gases systems in hospitals, are essential for supplying piped oxygen, nitrous oxide, nitrogen, carbon dioxide and medical air to various parts of the hospital. These systems are usually highly monitored by various computerized alarm systems.

91 Pipe Sizing Oxygen. Medical Air. Medical Vaccum.

92 Allowable Pressure Loss 60 Psig 25 mmHg = 0.5 Psig
For shaft 2 Medical Gas Type Medical Air Medical Vaccum Oxygen Typical outlet Flow 1 SCFM Allowable Pressure Loss 60 Psig 25 mmHg = 0.5 Psig Number Of Outlet 12 Longest Path ( m ) 55.4 Equivelent Length ( ft/100 ) Pressure drop ( Psi / 100 ft ) 1.8344

93 Oxygen Medical Air Pipe sizing.

94 section Number Of Outlet Diversity factor ( % ) Effective SCFM Size ( in ) A - B 1 100 0.5 B - C 2 C - D 3 D - E 4 75 E - F 5 3.75 F - G 6 4.5 G - H 7 5.25 H - I 8 I - J 9 6.75 J - K 10 7.5 K - L 11 8.25 L - M 12 M - N 13 33 4.29 N -O 14 4.62 O - P 15 4.95 P - Q 16 5.28 Q - S 17 5.61 S - T 18 5.94 T - U 19 6.27 U - V 38 12.54 0.75 V - W 57 18.81

95 Medical Vaccum Pipe sizing

96 section Number Of Outlet Diversity factor ( % ) Effective SCFM Size ( in ) A - B 1 100 0.75 B - C 2 C - D 3 D - E 4 75 E - F 5 3.75 F - G 6 4.5 G - H 7 5.25 H - I 8 I - J 9 6.75 J - K 10 7.5 K - L 11 8.25 L - M 12 M - N 13 33 4.29 N -O 14 4.62 O - P 15 4.95 P - Q 16 5.28 Q - S 17 5.61 S - T 18 5.94 T - U 19 6.27 U - V 38 12.54 V - W 57 18.81 1.25

97

98

99

100 Elevator Selection Criteria Type Speed Size High Quantity Applications

101 Elevator Selection We use the stander size , speed and quantity that used in the hospital From MRL Passenger Lift Range Company with Speed of 1m/s .

102 Sizing For Patients (bed)Elevator Sizing For Passenger Elevator
load Entrance layout Internal Shaft Diminution Door Type Doors Opining (at a height 2000mm) PIT Headroom Kg/person Width (mm) Depth Depth(mm) Height 1600/21 Through () 2400 2850 2PSO automatic 1100 1300 3600 Sizing For Passenger Elevator load Entrance layout Internal Shaft Diminution Door Type Doors Opining (at a height 2000mm) PIT Headroom Kg/person Width (mm) Depth Depth(mm) Height 800/ 10 Single 1750 2050 2PSO automatic 900 1200 3450

103 Thank YOU


Download ppt "Mechanical System For AL-Rehan Hospital"

Similar presentations


Ads by Google