Download presentation
Presentation is loading. Please wait.
1
Advanced Normalization
Chapter 15 Advanced Normalization Pearson Education © 2009
2
Chapter 15 - Objectives How inference rules can identify a set of all functional dependencies for a relation. How Inference rules called Armstrong’s axioms can identify a minimal set of useful functional dependencies from the set of all functional dependencies for a relation. Pearson Education © 2009
3
Chapter 15 - Objectives Normal forms that go beyond Third Normal Form (3NF), which includes Boyce-Codd Normal Form (BCNF), Fourth Normal Form (4NF), and Fifth Normal Form (5NF). How to identify Boyce–Codd Normal Form (BCNF). How to represent attributes shown on a report as BCNF relations using normalization. Pearson Education © 2009
4
Chapter 15 - Objectives Concept of multi-valued dependencies and Fourth Normal Form (4NF). The problems associated with relations that break the rules of 4NF. How to create 4NF relations from a relation, which breaks the rules of to 4NF. Pearson Education © 2009
5
Chapter 15 - Objectives Concept of join dependency and Fifth Normal Form (5NF). The problems associated with relations that break the rules of 5NF. How to create 5NF relations from a relation, which breaks the rules of 5NF. Pearson Education © 2009
6
More on Functional Dependencies
The complete set of functional dependencies for a given relation can be very large. Important to find an approach that can reduce the set to a manageable size. Pearson Education © 2009
7
Inference Rules for Functional Dependencies
Need to identify a set of functional dependencies (represented as X) for a relation that is smaller than the complete set of functional dependencies (represented as Y) for that relation and has the property that every functional dependency in Y is implied by the functional dependencies in X. Pearson Education © 2009
8
Inference Rules for Functional Dependencies
The set of all functional dependencies that are implied by a given set of functional dependencies X is called the closure of X, written X+ . A set of inference rules, called Armstrong’s axioms, specifies how new functional dependencies can be inferred from given ones. Pearson Education © 2009
9
Inference Rules for Functional Dependencies
Let A, B, and C be subsets of the attributes of the relation R. Armstrong’s axioms are as follows: (1) Reflexivity If B is a subset of A, then A → B (2) Augmentation If A → B, then A,C → B,C (3) Transitivity If A → B and B → C, then A → C Pearson Education © 2009
10
Inference Rules for Functional Dependencies
Further rules can be derived from the first three rules that simplify the practical task of computing X+. Let D be another subset of the attributes of relation R, then: (4) Self-determination A → A (5) Decomposition If A → B,C, then A → B and A → C Pearson Education © 2009
11
Inference Rules for Functional Dependencies
(6) Union If A → B and A → C, then A → B,C (7) Composition If A → B and C → D then A,C → B,D Pearson Education © 2009
12
Minimal Sets of Functional Dependencies
A set of functional dependencies Y is covered by a set of functional dependencies X, if every functional dependency in Y is also in X+; that is, every dependency in Y can be inferred from X. A set of functional dependencies X is minimal if it satisfies the following conditions: Every dependency in X has a single attribute on its right-hand side. Pearson Education © 2009
13
Minimal Sets of Functional Dependencies
We cannot replace any dependency A → B in X with dependency C → B, where C is a proper subset of A, and still have a set of dependencies that is equivalent to X. We cannot remove any dependency from X and still have a set of dependencies that is equivalent to X. Pearson Education © 2009
14
Boyce–Codd Normal Form (BCNF)
Based on functional dependencies that take into account all candidate keys in a relation, however BCNF also has additional constraints compared with the general definition of 3NF. Boyce–Codd normal form (BCNF) A relation is in BCNF if and only if every determinant is a candidate key. Pearson Education © 2009
15
Boyce–Codd Normal Form (BCNF)
Difference between 3NF and BCNF is that for a functional dependency A B, 3NF allows this dependency in a relation if B is a primary-key attribute and A is not a candidate key. Whereas, BCNF insists that for this dependency to remain in a relation, A must be a candidate key. Every relation in BCNF is also in 3NF. However, a relation in 3NF is not necessarily in BCNF. Pearson Education © 2009
16
Boyce–Codd Normal Form (BCNF)
Violation of BCNF is quite rare. The potential to violate BCNF may occur in a relation that: contains two (or more) composite candidate keys; the candidate keys overlap, that is have at least one attribute in common. Pearson Education © 2009
17
Review of Normalization (UNF to BCNF)
Pearson Education © 2009
18
Review of Normalization (UNF to BCNF)
Pearson Education © 2009
19
Review of Normalization (UNF to BCNF)
Pearson Education © 2009
20
Review of Normalization (UNF to BCNF)
Pearson Education © 2009
21
Fourth Normal Form (4NF)
Although BCNF removes anomalies due to functional dependencies, another type of dependency called a multi-valued dependency (MVD) can also cause data redundancy. Possible existence of multi-valued dependencies in a relation is due to 1NF and can result in data redundancy. Pearson Education © 2009
22
Fourth Normal Form (4NF)
Multi-valued Dependency (MVD) Dependency between attributes (for example, A, B, and C) in a relation, such that for each value of A there is a set of values for B and a set of values for C. However, the set of values for B and C are independent of each other. Pearson Education © 2009
23
Fourth Normal Form (4NF)
MVD between attributes A, B, and C in a relation using the following notation: A −>> B A −>> C Pearson Education © 2009
24
Fourth Normal Form (4NF)
A multi-valued dependency can be further defined as being trivial or nontrivial. A MVD A −>> B in relation R is defined as being trivial if (a) B is a subset of A or (b) A B = R. A MVD is defined as being nontrivial if neither (a) nor (b) are satisfied. A trivial MVD does not specify a constraint on a relation, while a nontrivial MVD does specify a constraint. Pearson Education © 2009
25
Fourth Normal Form (4NF)
Defined as a relation that is in Boyce-Codd Normal Form and contains no nontrivial multi-valued dependencies. Pearson Education © 2009
26
4NF - Example Pearson Education © 2009
27
Fifth Normal Form (5NF) A relation decompose into two relations must have the lossless-join property, which ensures that no spurious tuples are generated when relations are reunited through a natural join operation. However, there are requirements to decompose a relation into more than two relations. Although rare, these cases are managed by join dependency and fifth normal form (5NF). Pearson Education © 2009
28
Fifth Normal Form (5NF) Defined as a relation that has no join dependency. Pearson Education © 2009
29
5NF - Example Pearson Education © 2009
30
5NF - Example Pearson Education © 2009
Similar presentations
© 2025 SlidePlayer.com. Inc.
All rights reserved.