Download presentation
Presentation is loading. Please wait.
1
EECS0712 Adaptive Signal Processing 1 Introduction to Adaptive Signal Processing
Assoc. Prof. Dr. Peerapol Yuvapoositanon Dept. of Electronic Engineering CESdSP EECS0712 Adaptive Signal Processing Assoc. Prof. Dr. P.Yuvapoositanon
2
Course Outline Introduction to Adaptive Signal Processing
Adaptive Algorithms Families: Newton’s Method and Steepest Descent Least Mean Squared (LMS) Recursive Least Squares (RLS) Kalman Filtering Applications of Adaptive Signal Processing in Communications and Blind Equalization CESdSP EECS0712 Adaptive Signal Processing Assoc. Prof. Dr. P.Yuvapoositanon
3
Evaluation Assignment= 20 % Midterm = 30 % Final = 50 % CESdSP
EECS0712 Adaptive Signal Processing Assoc. Prof. Dr. P.Yuvapoositanon
4
Textbooks CESdSP EECS0712 Adaptive Signal Processing Assoc. Prof. Dr. P.Yuvapoositanon
5
http://embedsigproc. wordpress
/eecs0712-adaptive-signal-processing/ CESdSP EECS0712 Adaptive Signal Processing Assoc. Prof. Dr. P.Yuvapoositanon
6
QR code CESdSP EECS0712 Adaptive Signal Processing Assoc. Prof. Dr. P.Yuvapoositanon
7
Adaptive Signal Processing
Definition: Adaptive signal processing is the design of adaptive systems for signal-processing applications. [ CESdSP EECS0712 Adaptive Signal Processing Assoc. Prof. Dr. P.Yuvapoositanon
8
System Identification
Let’s consider a system called “plant” We need to know its characteristics, i.e., The impulse response of the system CESdSP EECS0712 Adaptive Signal Processing Assoc. Prof. Dr. P.Yuvapoositanon
9
Plant Comparison CESdSP
EECS0712 Adaptive Signal Processing Assoc. Prof. Dr. P.Yuvapoositanon
10
Error of Plant Outputs CESdSP
EECS0712 Adaptive Signal Processing Assoc. Prof. Dr. P.Yuvapoositanon
11
Error of Estimation Error of estimation is represented by the signal energy of error CESdSP EECS0712 Adaptive Signal Processing Assoc. Prof. Dr. P.Yuvapoositanon
12
Adaptive System We can do it adaptively CESdSP
EECS0712 Adaptive Signal Processing Assoc. Prof. Dr. P.Yuvapoositanon
13
One-weight Adjust the weight for minimum error e CESdSP
EECS0712 Adaptive Signal Processing Assoc. Prof. Dr. P.Yuvapoositanon
14
CESdSP EECS0712 Adaptive Signal Processing Assoc. Prof. Dr. P.Yuvapoositanon
15
Error Curve Parabola equation CESdSP
EECS0712 Adaptive Signal Processing Assoc. Prof. Dr. P.Yuvapoositanon
16
Partial diff. and set to zero
Partial differentiation Set to zero Result: CESdSP EECS0712 Adaptive Signal Processing Assoc. Prof. Dr. P.Yuvapoositanon
17
Multiple Weight Plants
We calculate the weight adaptively Questions: What is the type of signal “x” to be used, e.g. Sine, Cosine or Random signals ? If there is more than one weight w0 , i.e., w0….wN-1, how do we calculate the solution? CESdSP EECS0712 Adaptive Signal Processing Assoc. Prof. Dr. P.Yuvapoositanon
18
Plants with Multiple Weight
If we have multiple weights CESdSP EECS0712 Adaptive Signal Processing Assoc. Prof. Dr. P.Yuvapoositanon
19
Two-weight In the case of two-weight CESdSP
EECS0712 Adaptive Signal Processing Assoc. Prof. Dr. P.Yuvapoositanon
20
Input From We construct the x as vector with first element is the most recent CESdSP EECS0712 Adaptive Signal Processing Assoc. Prof. Dr. P.Yuvapoositanon
21
Plants with Multiple Weight (aka “Transversal Filter”)
If we have multiple weights CESdSP EECS0712 Adaptive Signal Processing Assoc. Prof. Dr. P.Yuvapoositanon
22
Regression input signal vector
If the current time is n, we have “Regression input signal vector” CESdSP EECS0712 Adaptive Signal Processing Assoc. Prof. Dr. P.Yuvapoositanon
23
CESdSP EECS0712 Adaptive Signal Processing Assoc. Prof. Dr. P.Yuvapoositanon
24
Convolution Output of plant is a convolution Ex For N=2 CESdSP
EECS0712 Adaptive Signal Processing Assoc. Prof. Dr. P.Yuvapoositanon
25
CESdSP EECS0712 Adaptive Signal Processing Assoc. Prof. Dr. P.Yuvapoositanon
26
We can use a vector-matrix multiplication
For example, for n=3 we construct y(3) as For example, for n=1 we construct y(1) as CESdSP EECS0712 Adaptive Signal Processing Assoc. Prof. Dr. P.Yuvapoositanon
27
CESdSP EECS0712 Adaptive Signal Processing Assoc. Prof. Dr. P.Yuvapoositanon
28
Let us stop there to consider Random signal theory first.
The error squared is Let us stop there to consider Random signal theory first. CESdSP EECS0712 Adaptive Signal Processing Assoc. Prof. Dr. P.Yuvapoositanon
29
Review of Random Signals
CESdSP EECS0712 Adaptive Signal Processing Assoc. Prof. Dr. P.Yuvapoositanon
30
Wireless Transmissions
Ideal signal transmission 1 1 1 1 1 1 1 Information Information is Random CESdSP EECS0712 Adaptive Signal Processing Assoc. Prof. Dr. P.Yuvapoositanon
31
Random variable CESdSP
EECS0712 Adaptive Signal Processing Assoc. Prof. Dr. P.Yuvapoositanon
32
Random Variable Random variable is a function
For a single time Coin Tossing CESdSP EECS0712 Adaptive Signal Processing Assoc. Prof. Dr. P.Yuvapoositanon
33
Our signal x(n) is a Random Variable
For a series of Coin Tossing CESdSP EECS0712 Adaptive Signal Processing Assoc. Prof. Dr. P.Yuvapoositanon
34
Coin tossing and Random Variable
If random We have random variable X CESdSP EECS0712 Adaptive Signal Processing Assoc. Prof. Dr. P.Yuvapoositanon
35
Random Digital Signal If the random variable is a function of time, it is called a stochastic process CESdSP EECS0712 Adaptive Signal Processing Assoc. Prof. Dr. P.Yuvapoositanon
36
Probability Mass Function
We need also to define the probability of each random variable CESdSP EECS0712 Adaptive Signal Processing Assoc. Prof. Dr. P.Yuvapoositanon
37
Probability Mass Function
PMF is for Discrete distribution function CESdSP EECS0712 Adaptive Signal Processing Assoc. Prof. Dr. P.Yuvapoositanon
38
Time and Emsemble CESdSP
EECS0712 Adaptive Signal Processing Assoc. Prof. Dr. P.Yuvapoositanon
39
Probability of X(2) CESdSP
EECS0712 Adaptive Signal Processing Assoc. Prof. Dr. P.Yuvapoositanon
40
Probability Density Function
PDF is for Continuous Distribution Function CESdSP EECS0712 Adaptive Signal Processing Assoc. Prof. Dr. P.Yuvapoositanon
41
CESdSP EECS0712 Adaptive Signal Processing Assoc. Prof. Dr. P.Yuvapoositanon
42
Probability Density Function
PDF values can be > 1 as long as its area under curve is 1 2 1 1/2 1 CESdSP EECS0712 Adaptive Signal Processing Assoc. Prof. Dr. P.Yuvapoositanon
43
Cumulative Distribution Function
CESdSP EECS0712 Adaptive Signal Processing Assoc. Prof. Dr. P.Yuvapoositanon
44
CESdSP EECS0712 Adaptive Signal Processing Assoc. Prof. Dr. P.Yuvapoositanon
45
Expectation Operator CESdSP
EECS0712 Adaptive Signal Processing Assoc. Prof. Dr. P.Yuvapoositanon
46
Expected Value Expected value is known as the “Mean” CESdSP
EECS0712 Adaptive Signal Processing Assoc. Prof. Dr. P.Yuvapoositanon
47
Example of Expected Value (Discrete)
We toss a die N times and get a set of outcomes Suppose we roll a die with N=6, we might get CESdSP EECS0712 Adaptive Signal Processing Assoc. Prof. Dr. P.Yuvapoositanon
48
Example of Expected Value (Discrete)
But, empirically we have Empirical (Monte Carlo) estimate as Expected Value CESdSP EECS0712 Adaptive Signal Processing Assoc. Prof. Dr. P.Yuvapoositanon
49
Theoretical Expected Value
But in theory, for a die CESdSP EECS0712 Adaptive Signal Processing Assoc. Prof. Dr. P.Yuvapoositanon
50
Ensemble Average 1 ensemble i ensembles CESdSP
EECS0712 Adaptive Signal Processing Assoc. Prof. Dr. P.Yuvapoositanon
51
Ensemble Average CESdSP
EECS0712 Adaptive Signal Processing Assoc. Prof. Dr. P.Yuvapoositanon
52
I) Linearity CESdSP EECS0712 Adaptive Signal Processing Assoc. Prof. Dr. P.Yuvapoositanon
53
II) CESdSP EECS0712 Adaptive Signal Processing Assoc. Prof. Dr. P.Yuvapoositanon
54
III) CESdSP EECS0712 Adaptive Signal Processing Assoc. Prof. Dr. P.Yuvapoositanon
55
Autocorrelation CESdSP
EECS0712 Adaptive Signal Processing Assoc. Prof. Dr. P.Yuvapoositanon
56
CESdSP EECS0712 Adaptive Signal Processing Assoc. Prof. Dr. P.Yuvapoositanon
57
Autocorrelation n=m CESdSP
EECS0712 Adaptive Signal Processing Assoc. Prof. Dr. P.Yuvapoositanon
58
Autocorrelation Matrix
CESdSP EECS0712 Adaptive Signal Processing Assoc. Prof. Dr. P.Yuvapoositanon
59
Covariance CESdSP EECS0712 Adaptive Signal Processing Assoc. Prof. Dr. P.Yuvapoositanon
60
Stationarity (I) I) n1 n2 CESdSP
EECS0712 Adaptive Signal Processing Assoc. Prof. Dr. P.Yuvapoositanon
61
Stationarity (II) II) CESdSP
EECS0712 Adaptive Signal Processing Assoc. Prof. Dr. P.Yuvapoositanon
62
Expected Value of Error Energy
Let’s take the expected value of error energy CESdSP EECS0712 Adaptive Signal Processing Assoc. Prof. Dr. P.Yuvapoositanon
63
Vector-Matrix Differentiation
CESdSP EECS0712 Adaptive Signal Processing Assoc. Prof. Dr. P.Yuvapoositanon
64
Partial diff. and set to zero
Differentiation Result: CESdSP EECS0712 Adaptive Signal Processing Assoc. Prof. Dr. P.Yuvapoositanon
65
2-D Error surface CESdSP
EECS0712 Adaptive Signal Processing Assoc. Prof. Dr. P.Yuvapoositanon
66
Four Basic Classes of Adaptive Signal Processing
I) Identification II) Inverse Modelling III) Prediction IV) Interference Cancelling CESdSP EECS0712 Adaptive Signal Processing Assoc. Prof. Dr. P.Yuvapoositanon
67
The Four Classes of Adaptive Filtering
CESdSP EECS0712 Adaptive Signal Processing Assoc. Prof. Dr. P.Yuvapoositanon
68
System Identification
CESdSP EECS0712 Adaptive Signal Processing Assoc. Prof. Dr. P.Yuvapoositanon
69
Inverse Modelling CESdSP
EECS0712 Adaptive Signal Processing Assoc. Prof. Dr. P.Yuvapoositanon
70
Prediction CESdSP EECS0712 Adaptive Signal Processing Assoc. Prof. Dr. P.Yuvapoositanon
71
Interference Canceller
CESdSP EECS0712 Adaptive Signal Processing Assoc. Prof. Dr. P.Yuvapoositanon
72
What are we looking for in Adaptive Systems?
Rate of Convergence Misadjustment Tracking Robustness Computational Complexity Numerical Properties CESdSP EECS0712 Adaptive Signal Processing Assoc. Prof. Dr. P.Yuvapoositanon
Similar presentations
© 2025 SlidePlayer.com. Inc.
All rights reserved.