Presentation is loading. Please wait.

Presentation is loading. Please wait.

Chiral phase transition in magnetic field

Similar presentations


Presentation on theme: "Chiral phase transition in magnetic field"— Presentation transcript:

1 Chiral phase transition in magnetic field
毛施君 (Mao Shijun) 西安交通大学(Xi’an Jiaotong University)

2 QCD Phase Diagram HICs: Compact stars:1010~15 Gauss
Early Universe:1024 Gauss Chiral phase transition Deconfinement phase transition

3 Lattice QCD Chiral phase transition: Tc(B) is an open question.
refs: G. Bali, et.al, Phys. Rev. D86, (2012);

4 IMC is still an open question.
Magnetic Catalysis (MC) is confirmed by mean field calculation in effective models ---- Dimension Reduction (Nucl. Phys. B 462, 249 (1996); 563, 361 (1999)) IMC is still an open question. magnetic inhibition: Fukushima et al., PRL 110, (2013) contribution from neutral pion (2) mass gap in large Nc limit: Toru et al. , PLB 720, 192 (2013) (3) chirality imbalance: Huang Mei et al. , PRD 88, (2013) (4) contribution from sea quark (gluon screening effect): Bruckmann et al. , JHEP 04, 112 (2013) (5) weakening of strong coupling: Pinto et al. , PRC 90, (2014) …… 1. pion properties, 2. feed-down from pions to quarks

5 NJL model beyond MF SU(2) Nambu--Jona-Lasinio model Idea
NJL模型受BCS理论的启发,被广泛用来研究手征对称性(手征凝聚) (2008, Nobel Prize)。 Idea (1)Quarks:mean field (2)Mesons:RPA resummation (quantum fluctuation) (3)Q-M system: feed-down from mesons to quarks

6 (1) Gap eq. @ mean field order parameter: chiral condensate
effective quark mass thermodynamic potential : quark propagator in Ritus form: gap equation:

7 (2) Mesons (quantum fluctuations)
meson Random Phase Approximation @ Ritus momentum space pole equation:

8 Pion mass jump @ Mott temperature
pole equation meson mass jump induced by dimension reduction of quarks possible pion enhancement during the cooling of fireball

9 (3) Gap eq. beyond mean field
mesons quark-meson system: meson thermo- dynamic potential: meson energy: transverse velocity: new gap equation:“running”coupling constant G’(B,T)

10 MC and IMC order parameter low T, m ↑ with B, (MC); G’/G<1,
high T, m ↓ with B, (IMC); G’/G<1, meson weakens coupling。 magnetic inhibition

11 chiral phase transition
critical temperature Tc decreases with B;consistent with LQCD Inverse Magnetic Catalysis:

12 Summary and outlook quantum fluctuations “running” coupling G’(B,T)
Inverse magnetic catalysis for chiral phase transition refs: (1) S.J. Mao, Phys. Lett. B 758, (2016) (2) S.J. Mao, Phys. Rev. D 94, (2016) (3) S.J. Mao, Y.X. Wang, PRD accepted, Outlook: charged meson and condensate; deconfinement phase transition BMF.

13 Back up

14 G’(B,T)

15 π0 mass and transverse velocity
meson mass: Goldstone mode transverse (x,y): longitudinal (z) : dimension reduction Mermin-Wagner-Coleman theorem possible IMC

16 from IMC to MC critical temperature (2nd), @ μq=0
coexistence quark chemical potential T=0

17 --- Fu Weijie talk in Yichang

18 chiral and deconfinement phase transition
PNJL

19 Theoretical framework
1. Quark level:solving gap equation with mean field ,mmf 2. Mesons(quantum fluctuations) 3. Feed-down from mesons to quarks: ---- beyond mean field gap eq,mbmf However, (1)G is constant; (3)Running G’(B,T) From eq(1), B ↑,m ↑; G ↑,m ↑; Mesons

20 meson mass under eB --- MAO, WANG, arXiv:1702.04868 model parameters
Pauli-Villars

21 numerical results model regularization

22 quark propagator under external magnetic field
---- Ritus propagator Ritus momentum refs: Ann. Phys. 69, 555 (1972); Nucl. Phys. B747, 266 (2006);Ann. Phys. 295, 33 (2002) .

23 charged boson propagator (Ritus) under eB
refs: Ann. Phys. 69, 555 (1972); Nucl. Phys. B747, 266 (2006); Ann. Phys. 295, 33 (2002) . polarization functions

24 Lattice QCD Chiral phase transition: Tc(B) is an open question.
refs: G. Bali, et.al, Phys. Rev. D86, (2012);D’Elia et. Al, Phys. Rev. D83, (2011)


Download ppt "Chiral phase transition in magnetic field"

Similar presentations


Ads by Google