Download presentation
Presentation is loading. Please wait.
Published byDeepesh Bright Modified over 7 years ago
1
MATLAB(Matrix Laboratory)
2
Introduction Developed by MathWorks Numerical Computing Environment Fourth-generation Programming Language
3
Applications Matrix manipulation Data visualization Function visualization User Interfaces Algorithm development Mathematical modeling
4
Window Layout
5
WINDOWS IN MATLAB Command Window M-file editor Workspace Command history Current directory
6
Command window To give input To Display result To execute intermediate command
7
M-file editor Write Script files Write functions Displaying other format files C –files Java files HDL files
8
Workspace For watching all the variables To plot intermediate variables Debugging
9
Image Processing in Matlab Image Processing toolbox Nearly 500 built in functions are available Advanced sinks are available for image analysis and enhancement Very user friendly when compared to the other numerical image processing softwares
10
Reading and Display RGB Image clc; clear all; close all; i=imread('peppers.png'); imshow(i);axis on;grid on imtool(i) whos i
11
Output
12
Converting colour image to gray clc; clear all; close all; i=imread('peppers.png'); i_gray=rgb2gray(i); imshow(i_gray);axis on;grid on imtool(i_gray) whos i_gray
13
Output
14
Formula for RGB to gray intensity = 0.2989*red + 0.5870*green + 0.1140*blue
15
Converting Gray image to Binary clc; clear all; close all; i=imread('peppers.png'); i_gray=rgb2gray(i); i_binary=im2bw(i_gray); imshow(i_binary);axis on;grid on imtool(i_binary)
16
Output
17
For loop in MATLAB for var=0:100 your command; end here 0 Starting value 100 End value
18
Accessing pixels using for loop clc; clear all; close all; i=imread('peppers.png'); i_gray=rgb2gray(i); rows=size(i_gray,1); cloumns=size(i_gray,2); for m=1:rows for n=1:cloumns if (i(m,n)>128) i_binary(m,n)=1; else i_binary(m,n)=0; end imshow(i_binary);getframe; end
19
Histogram clc; clear all; close all; i=imread('peppers.png'); i_gray=rgb2gray(i); h=imhist(i_gray); plot(h);grid on;xlabel ('Intensity');ylabel('Number of Pixels')
20
Output
21
Histogram(RGB) clc; clear all; close all; i=imread('peppers.png'); r_h=imhist(i(:,:,1)); r_g=imhist(i(:,:,2)); r_b=imhist(i(:,:,3)); plot(r_h,'r');grid on;hold on; plot(r_g,'g'); plot(r_b,'b'); xlabel ('Intensity');ylabel ('Number of Pixels') legend('R','G','B')
22
Output
23
Histogram equalization clc; clear all; close all; i=imread('peppers.png'); i_gray=rgb2gray(i); h_eq_image=histeq(i_gray); figure;imhist(i_gray);grid on;title('Before Histogram Equalization') figure;imshow(i_gray);grid on;title('Before Histogram Equalization') figure;imhist(h_eq_image);grid on;title('After Histogram Equalization') figure;imshow(h_eq_image);grid on;title('After Histogram Equalization')
24
output
25
Fourier Transform clc; clear all; close all; i=rgb2gray(imread('peppers.png')); fft_out=fft2(i); shifted_fft=log(abs(fftshift(fft_out))); imshow(shifted_fft,[])
26
output
27
Wavelet Transform clc; clear all; close all; i=rgb2gray(imread('peppers.png')); [hh,hl,lh,ll]=dwt2(i,'db1'); wavelet_out=[hh,hl;lh,ll]; imshow(wavelet_out,[])
28
Output
29
PSNR Formula Here R=255(for 8 bit image)
30
Matlab Implementation function psnr = calculate_psnr(I1,I2) R=255; mse=sum(sum((I1-I2)^(2))); psnr=abs(10*log10(R^2/mse)); end
31
Image Filtering(average) clc; clear all; close all; i=rgb2gray(imread('peppers.png')); h = fspecial('average'); f_out=imfilter(i,h); figure,imshow(i);title('Original Image') figure,imshow(f_out);title('Filtered Image') calculate_psnr(i,f_out)
32
Image de-noising by filtering clc; clear all; close all; i=rgb2gray(imread('peppers.png')); i_noise=imnoise(i,'salt & pepper',0.001); f_out = medfilt2(i_noise); figure,imshow(i_noise);title('Original Image') figure,imshow(f_out);title('Filtered Image') calculate_psnr(i,f_out)
33
output
34
Gaussian Low pass filter clc; clear all; close all; i=rgb2gray(imread('peppers.png')); h = fspecial('gaussian',[3,3],0.9); i_noise=imnoise(i,'gaussian'); f_out = imfilter(i_noise,h); figure,imshow(i_noise);title('Original Image') figure,imshow(f_out);title('Filtered Image') figure,freqz2(h)
35
Convolution Operation clc; clear all; close all; h=[0 0.25 0 0.25 0 0.25 0 0.25 0]; i=im2double(rgb2gray(imread('peppers.png'))); conv_out=conv2(i,h); figure,imshow(i);title('Original Image') figure,imshow(conv_out);title('Convolution Output')
Similar presentations
© 2025 SlidePlayer.com. Inc.
All rights reserved.