Download presentation
Presentation is loading. Please wait.
1
ESE535: Electronic Design Automation
Day 7: February 4, 2013 Clustering (LUT Mapping, Delay) Penn ESE535 Spring DeHon
2
Today How do we map to LUTs? What happens when Lessons… IO dominates
Behavioral (C, MATLAB, …) RTL Gate Netlist Layout Masks Arch. Select Schedule FSM assign Two-level, Multilevel opt. Covering Retiming Placement Routing Today How do we map to LUTs? What happens when IO dominates Delay dominates? Lessons… for non-LUTs for delay-oriented partitioning Penn ESE535 Spring DeHon
3
LUT Mapping Problem: Map logic netlist to LUTs Old problem?
minimizing area minimizing delay Old problem? Technology mapping? (Day 2) How big is the library for K-input LUT? 22K gates in library Penn ESE535 Spring DeHon
4
Simplifying Structure
K-LUT can implement any K-input function Penn ESE535 Spring DeHon
5
Preclass: Cover in 4-LUT?
Penn ESE535 Spring DeHon
6
Preclass: Cover in 4-LUT?
Penn ESE535 Spring DeHon
7
Preclass: Cover in 4-LUT?
Penn ESE535 Spring DeHon
8
Preclass: Cover in 4-LUT?
Penn ESE535 Spring DeHon
9
Preclass: Cover in 4-LUT?
Penn ESE535 Spring DeHon
10
Cost Function Delay: number of LUTs in critical path
doesn’t say delay in LUTs or in wires does assume uniform interconnect delay Area: number of LUTs Assumes adequate interconnect to use LUTs Penn ESE535 Spring DeHon
11
LUT Mapping NP-Hard in general
Fanout-free -- can solve optimally given decomposition (but which one?) Delay optimal mapping achievable in Polynomial time Area w/ fanout NP-complete Penn ESE535 Spring DeHon
12
Preliminaries What matters/makes this interesting? Area / Delay target
Decomposition Fanout replication reconvergent Penn ESE535 Spring DeHon
13
Costs: Area vs. Delay Penn ESE535 Spring DeHon
14
Decomposition Penn ESE535 Spring DeHon
15
Decomposition Penn ESE535 Spring DeHon
16
Fanout: Replication Penn ESE535 Spring DeHon
17
Fanout: Replication Penn ESE535 Spring DeHon
18
Fanout: Reconvergence
Penn ESE535 Spring DeHon
19
Fanout: Reconvergence
Penn ESE535 Spring DeHon
20
What makes it hard? Cost does not monotonically increase as cover more of graph. Not clear when to stop? We say cost does not have a monotone property Penn ESE535 Spring DeHon
21
Preclass Revisited Penn ESE535 Spring DeHon
22
Definition Cone: set of nodes in the recursive fanin of a node
Penn ESE535 Spring DeHon
23
Example Cones Penn ESE535 Spring DeHon
24
Delay Penn ESE535 Spring DeHon
25
Delay of Preclass Circuit?
Poll: Delay of preclass circuit Penn ESE535 Spring DeHon
26
Dynamic Programming Optimal covering of a logic cone is:
Minimum cost (all possible coverings) Evaluate costs of each node based on: cover node cones covering each fanin to node cover Evaluate node costs in topological order Key: are calculating optimal solutions to subproblems only have to evaluate covering options at each node Penn ESE535 Spring DeHon
27
Flowmap Key Idea: LUT holds anything with K inputs
Use network flow to find cuts logic can pack into LUT including reconvergence …allows replication Optimal depth arise from optimal depth solution to subproblems Penn ESE535 Spring DeHon
28
Max-Flow / Min-Cut The maximum flow in a network is equal to the minimum cut …the bottleneck We can find the mincut by computing the maxflow. Conceptually, how would we determine the maximum flow? Penn ESE535 Spring DeHon
29
MaxFlow Set all edge flows to zero While there is a path from s,t
F[u,v]=0 While there is a path from s,t (breadth-first-search) for each edge in path f[u,v]=f[u,v]+1 f[v,u]=-f[u,v] When c[v,u]=f[v,u] remove edge from search O(|E|*cutsize) Penn ESE535 Spring DeHon
30
Flowmap Delay objective: Height of node will be: Check shorter first
Examples are K=4 Delay objective: minimum height, K-feasible cut I.e. cut no more than K edges start by bounding fanin K Height of node will be: height of predecessors or one greater than height of predecessors Check shorter first 1 1 1 1 2 Penn ESE535 Spring DeHon
31
Flowmap Construct flow problem sink target node being mapped
source start set (primary inputs) flow infinite into start set flow of one on each link to see if height same as predecessors collapse all predecessors of maximum height into sink (single node, cut must be above) height +1 case is trivially true Penn ESE535 Spring DeHon
32
Example Subgraph Target: K=4 1 1 1 1 2 2
Penn ESE535 Spring DeHon
33
Trivial: Height +1 1 1 1 1 2 2 3 Penn ESE535 Spring DeHon
34
Collapse at max height 1 1 1 1 2 2 Penn ESE535 Spring DeHon
35
Collapse at max height 1 1 1 1 2 2 Collapsed Node
Penn ESE535 Spring DeHon
36
Augmenting Flows Collapsed Node Penn ESE535 Spring DeHon
37
Augmenting Flows Collapsed Node Penn ESE535 Spring DeHon
38
Augmenting Flows Collapsed Node Penn ESE535 Spring DeHon
39
Augmenting Flows Collapsed Node Penn ESE535 Spring DeHon
40
Augmenting Flows Collapsed Node Collapsed Node
Penn ESE535 Spring DeHon
41
Collapse at max height: works for K=4
2 Collapsed Node 1 1 1 1 2 2 Penn ESE535 Spring DeHon
42
Collapse not work (K still 4) (different/larger graph)
1 1 1 1 2 2 Forced to label height+1 2 Penn ESE535 Spring DeHon
43
Reconvergent fanout (yet different graph) Can label at height 1 1 1 1
2 Can label at height 2 Penn ESE535 Spring DeHon
44
Flowmap Max-flow Min-cut algorithm to find cut
Use augmenting paths until discover max flow > K O(K|e|) time to discover K-feasible cut (or that does not exist) Depth identification: O(KN|e|) Penn ESE535 Spring DeHon
45
Mincut may not be unique
2 Collapsed Node 1 1 1 1 2 2 Penn ESE535 Spring DeHon
46
Flowmap Min-cut may not be unique
To minimize area achieving delay optimum find max volume min-cut Compute max flow find min cut remove edges consumed by max flow DFS from source Compliment set is max volume set Penn ESE535 Spring DeHon
47
Collapse at max height: works for K=4
2 Collapsed Node 1 1 1 1 2 2 Penn ESE535 Spring DeHon
48
BFS from Source 2 Collapsed Node 1 1 1 1 2 2
Penn ESE535 Spring DeHon
49
BFS from Source 1 1 1 1 2 2 Collapsed Node 2
Penn ESE535 Spring DeHon
50
BFS from Source 1 1 1 1 2 2 Collapsed Node 2
Penn ESE535 Spring DeHon
51
BFS from Source 1 1 1 1 2 2 Collapsed Node 2 Does not find rest.
Penn ESE535 Spring DeHon
52
Max-Volume Mincut 1 1 1 1 2 2 Collapsed Node 2
Penn ESE535 Spring DeHon
53
Flowmap Covering from labeling is straightforward Notes:
process in reverse topological order allocate identified K-feasible cut to LUT remove node postprocess to minimize LUT count Notes: replication implicit (covered multiple places) nodes purely internal to one or more covers may not get their own LUTs Penn ESE535 Spring DeHon
54
Flowmap Roundup Label Cover Work from inputs to outputs
Find max label of predecessors Collapse new node with all predecessors at this label Can find flow cut K? Yes: mark with label (find max-volume cut extent) No: mark with label+1 Cover Work from outputs to inputs Allocate LUT for identified cluster/cover Recurse covering selection on inputs to identified LUT Penn ESE535 Spring DeHon
55
Changing Cost Functions Now (previous was delay)
Area Changing Cost Functions Now (previous was delay) Penn ESE535 Spring DeHon
56
DF-Map Duplication Free Mapping
can find optimal area under this constraint (but optimal area may not be duplication free) [Cong+Ding, IEEE TR VLSI Sys. V2n2p137] Penn ESE535 Spring DeHon
57
Maximum Fanout Free Cones
MFFC: bit more general than trees Penn ESE535 Spring DeHon
58
MFFC Follow cone backward
end at node that fans out (has output) outside the code Penn ESE535 Spring DeHon
59
MFFC example Identify FFC I F G H C D E A B
Penn ESE535 Spring DeHon
60
MFFC example I F G H C D E A B Penn ESE535 Spring DeHon
61
DF-Map Partition into graph into MFFCs Optimally map each MFFC
In dynamic programming for each node examine each K-feasible cut note: this is very different than flowmap where only had to examine a single cut Example to follow pick cut to minimize cost 1 + cones for fanins Penn ESE535 Spring DeHon
62
DF-Map Example Cones? Penn ESE535 Spring DeHon
63
DF-Map Example Penn ESE535 Spring DeHon
64
DF-Map Example Penn ESE535 Spring DeHon
65
DF-Map Example Penn ESE535 Spring DeHon
66
DF-Map Example Penn ESE535 Spring DeHon
67
DF-Map Example Penn ESE535 Spring DeHon
68
DF-Map Example Start mapping cone Penn ESE535 Spring DeHon
69
DF-Map Example 1 1 1 1 Penn ESE535 Spring DeHon
70
DF-Map Example 1 1 1 ? 1 Penn ESE535 Spring DeHon
71
DF-Map Example 1 1 1 ? 1 Penn ESE535 Spring DeHon
72
DF-Map Example 1 1 1 ? 1 Penn ESE535 Spring DeHon
73
DF-Map Example 1 1 1 ? 1 Penn ESE535 Spring DeHon
74
DF-Map Example 1 1 1 1 1 Penn ESE535 Spring DeHon
75
DF-Map Example Similar to previous 1 1 1 1 1 1 1
Penn ESE535 Spring DeHon
76
DF-Map Example 1 1 1 1 1 1 1 ? Penn ESE535 Spring DeHon
77
DF-Map Example 1 1 1 1 1 1 1 ? Penn ESE535 Spring DeHon
78
DF-Map Example 1 1 1 1 1 1 1 3 ? Penn ESE535 Spring DeHon
79
DF-Map Example 1 1 1 1 1 1 1 ? Penn ESE535 Spring DeHon
80
DF-Map Example 2 1 1 1 1 1 1 1 ? Penn ESE535 Spring DeHon
81
DF-Map Example 1 1 1 1 1 1 1 ? Penn ESE535 Spring DeHon
82
DF-Map Example 3 1 1 1 1 1 1 1 ? Penn ESE535 Spring DeHon
83
DF-Map Example 1 1 1 1 1 1 1 2 Penn ESE535 Spring DeHon
84
DF-Map Example 1 1 1 1 1 1 1 2 ? Penn ESE535 Spring DeHon
85
DF-Map Example 1 1 1 1 1 1 1 2 ? Penn ESE535 Spring DeHon
86
DF-Map Example 1 1 1 1 1 1 1 3 2 ? Penn ESE535 Spring DeHon
87
DF-Map Example 1 1 1 1 1 1 1 3 2 ? Penn ESE535 Spring DeHon
88
DF-Map Example 1 1 3 1 1 1 1 1 3 2 ? Penn ESE535 Spring DeHon
89
DF-Map Example 1 1 3 1 1 1 1 1 3 2 ? Penn ESE535 Spring DeHon
90
DF-Map Example 3 1 1 3 1 1 1 1 1 3 2 ? Penn ESE535 Spring DeHon
91
DF-Map Example 1 1 1 1 1 1 1 2 3 Penn ESE535 Spring DeHon
92
DF-Map Example 1 1 1 1 1 1 1 2 3 ? Penn ESE535 Spring DeHon
93
DF-Map Example 1 1 1 1 1 1 1 2 3 ? Penn ESE535 Spring DeHon
94
DF-Map Example 1 1 1 1 1 1 1 4 2 3 ? Penn ESE535 Spring DeHon
95
DF-Map Example 1 1 1 1 1 1 1 4 2 3 ? Penn ESE535 Spring DeHon
96
DF-Map Example 1 1 3 1 1 1 1 1 4 2 3 ? Penn ESE535 Spring DeHon
97
DF-Map Example 1 1 3 1 1 1 1 1 4 2 3 ? Penn ESE535 Spring DeHon
98
DF-Map Example 1 1 3 3 1 1 1 1 1 4 2 3 ? Penn ESE535 Spring DeHon
99
DF-Map Example 1 1 3 3 1 1 1 1 1 4 2 3 ? Penn ESE535 Spring DeHon
100
DF-Map Example 1 1 3 3 1 1 1 1 1 4 2 3 ? 4 Penn ESE535 Spring DeHon
101
DF-Map Example 1 1 3 3 1 1 1 1 1 4 2 3 ? 4 Penn ESE535 Spring DeHon
102
DF-Map Example 1 1 3 3 1 1 1 1 1 4 2 3 ? 3 4 Penn ESE535 Spring DeHon
103
DF-Map Example 1 1 1 1 1 1 1 2 3 3 Penn ESE535 Spring DeHon
104
DF-Map Example 1 1 1 1 1 1 1 2 3 3 ? Penn ESE535 Spring DeHon
105
DF-Map Example 1 1 1 1 1 1 1 2 3 3 ? Penn ESE535 Spring DeHon
106
DF-Map Example 1 1 1 1 1 1 1 2 3 3 9 ? Penn ESE535 Spring DeHon
107
DF-Map Example 1 1 1 1 1 1 1 2 3 3 9 ? Penn ESE535 Spring DeHon
108
DF-Map Example 1 1 1 1 1 1 1 7 2 3 3 9 ? Penn ESE535 Spring DeHon
109
DF-Map Example 1 1 1 1 1 1 1 7 2 3 3 9 ? Penn ESE535 Spring DeHon
110
DF-Map Example 1 1 1 1 1 1 1 7 5 2 3 3 9 ? Penn ESE535 Spring DeHon
111
DF-Map Example 1 1 1 1 1 1 1 2 3 3 5 Penn ESE535 Spring DeHon
112
DF-Map Example 1 1 1 1 1 1 1 2 3 3 5 Penn ESE535 Spring DeHon
113
Composing Don’t need minimum delay off the critical path
Don’t always want/need minimum delay Composite: map with flowmap Greedy decomposition of “most promising” non-critical nodes DF-map these nodes Penn ESE535 Spring DeHon
114
Variations on a Theme Penn ESE535 Spring DeHon
115
Applicability to Non-LUTs?
E.g. LUT Cascade can handle some functions of K inputs How apply? Penn ESE535 Spring DeHon
116
Adaptable to Non-LUTs Sketch:
Initial decomposition to nodes that will fit Find max volume, min-height K-feasible cut ask if logic block will cover yes done no exclude one (or more) nodes from block and repeat exclude == collapse into start set nodes this makes heuristic Penn ESE535 Spring DeHon
117
Partitioning? Effectively partitioning logic into clusters LUT cluster
unlimited internal “gate” capacity limited I/O (K) simple delay cost model 1 cross between clusters 0 inside cluster Penn ESE535 Spring DeHon
118
Partitioning Clustering
if strongly I/O limited, same basic idea works for partitioning to components typically: partitioning onto multiple FPGAs assumption: inter-FPGA delay >> intra-FPGA delay w/ area constraints similar to non-LUT case make min-cut will it fit? Exclude some LUTs and repeat Penn ESE535 Spring DeHon
119
Clustering for Delay W/ no IO constraint area is monotone property
DP-label forward with delays grab up largest labels (greatest delays) until fill cluster size Work backward from outputs creating clusters as needed Penn ESE535 Spring DeHon
120
Area and IO? Real problem: Doing both optimally is NP-hard
FPGA/chip partitioning Doing both optimally is NP-hard Heuristic around IO cut first should do well (e.g. non-LUT slide) [Yang and Wong, FPGA’94] Penn ESE535 Spring DeHon
121
Partitioning To date: Open/promising
primarily used for 2-level hierarchy I.e. intra-FPGA, inter-FPGA Open/promising adapt to multi-level for delay-optimized partitioning/placement on fixed-wire schedule localize critical paths to smallest subtree possible? Penn ESE535 Spring DeHon
122
Summary Optimal LUT mapping NP-hard in general
fanout, replication, …. K-LUTs makes delay optimal feasible single constraint: IO capacity technique: max-flow/min-cut Heuristic adaptations of basic idea to capacity constrained problem promising area for interconnect delay optimization Penn ESE535 Spring DeHon
123
Today’s Big Ideas: IO may be a dominant cost Exploit structure: K-LUTs
limiting capacity, delay Exploit structure: K-LUTs Mixing dominant modes multiple objectives Define optimally solvable subproblem duplication free mapping Penn ESE535 Spring DeHon
124
Admin Reading Wednesday on web
Assignment 2a was due at beginning of class Assignment 2b due next Monday Penn ESE535 Spring DeHon
Similar presentations
© 2024 SlidePlayer.com. Inc.
All rights reserved.