Download presentation
Presentation is loading. Please wait.
Published byBrandon Loveall Modified over 10 years ago
1
1
2
2
3
Unknown 3
4
4
5
5
6
6
7
7
8
8
9
9
10
10 Backprojection usually produce a blurred version of the image.
11
11 3 1 3 1 3 05330
12
12 0.6 0.2 0.6 0.2 0.6 3 1 3 1 3
13
13 010.6 0 01 0 01 0 01 0 01 0 05330
14
14 0.6 0.2 0.6 0.2 0.6 01 0 01 0 01 0 01 0 01 0 1.61.2 0.6 0.21.20.8 0.2 0.61.61.2 0.6 0.21.20.8 0.2 0.61.61.2 0.6 BP: Numerical Example
15
15
16
16
17
2D-FT(I) 1D-FT(Radon(I)) 0°10° 90° 120° 17
18
18 Fundamentals of Medical Imaging Paul Suentes
19
19 2D Inverse Fourier Transform Function we want to reconstruct Let’s change F from cartesian coordinates to polar coordinates
20
20
21
21 Form half lines to full lines :
22
22 Now the Central Slice Theorem become simply : And therefore:
23
23 And its 1D inverse Fourier transform from k to r. In the Radon domain it’s a convolution over r :
24
24
25
25 Note that it’s a backprojection ! This is called Filtered Backprojection
26
26 Fundamentals of Medical Imaging Paul Suentes
27
27
28
28
29
29
30
30
31
31 Ram-Lak Filter (or smoothed version of it) Projections Backproject Reconstructed image
32
32
33
33 3 1 3 1 3 05330
34
34 0.6 0.2 0.6 0.2 0.6 3 1 3 1 3 05330
35
35 0.6 0.2 0.6 0.2 0.6 3 1 3 1 3 05330 2.2
36
36 0.6 0.2 0.6 0.2 0.6 3 1 3 1 3 05330 -2.22.80.8 -2.2 Rectification
37
37 0.161.160.76 0.16 -0.220.760.36 -0.22 0.161.160.76 0.16 -0.220.760.36 -0.22 0.161.160.76 0.16 3 1 3 1 3 05330 -2.22.80.8 -2.2 Rectification
38
38
Similar presentations
© 2025 SlidePlayer.com. Inc.
All rights reserved.