Presentation is loading. Please wait.

Presentation is loading. Please wait.

 s 2ph = Z1Z2 m/E m = m1m2 / (m1+m2), E in keV

Similar presentations


Presentation on theme: " s 2ph = Z1Z2 m/E m = m1m2 / (m1+m2), E in keV"— Presentation transcript:

1  s 2ph = 31.29 Z1Z2 m/E m = m1m2 / (m1+m2), E in keV
Astrofisica nucleare al Gran Sasso Carlo Broggini INFN-Padova Men in pits or wells sometimes see the stars…. Aristotle Stellar Energy+Nucleosynthesis Hydrogen Burning s(Estar) with Estar << ECoulomb s(E) = S(E) e–2ph E-1 2ph = Z1Z2 m/E m = m1m2 / (m1+m2), E in keV Reaction Rate(star)  F(E) s(E) dE s Gamow Peak Extrap. Meas. S(E) Maxwell Boltzmann

2 Background due to cosmic rays:
* Electromagnetic component (removed by ~10 cm of lead) * Hadrons (removed by a few meters of concrete) * Low energy negative muons : capture and production of radioactive nuclei (1-10 s lifetime, delayed gamma ray emission ) * High energy muons: ionization + spallation giving rise to radioactive nuclei (1-10 s lifetime, delayed gamma ray emission ) and neutrons . Because of the delayed gamma rays active veto are not very effective and passive shields to suppress natural radioactivity have to be ‘light’ (10-15 cm of lead) Muon suppression: Vertical muon intensity above 1 GeV/c at sea level: ~70 m-2s-1sr-1, angular distribution ÷ cos2θzenith To suppres muons a shield of at least 1 km of water equivalent is required (1 km w.e. = 105 gr/cm2 ~ 300 meters of rock). The flat region at large depths is due to neutrino-induced muons of energy above 2 GeV

3 1400 m of dolomite rock, CaMg(CO3)2, (~3800 m w.e.)
1979 Gran Sasso Lab proposed by A. Zichichi 1989 first underground experiment ON 1400 m of dolomite rock, CaMg(CO3)2, (~3800 m w.e.) Surf.: m2, Vol.: m3, Ventilation: 1 vol / 3.5 hours (Rn in air Bq m-3) Muon flux: 1.1 m-2h-1, 6 orders of magnitude reduction Neutron flux, mainly from (,n) : cm-2s-1 (0-1 keV), cm-2s-1 (> 1 keV), 3 orders of magnitude reduction Gamma rays: only 1 order of magnitude reduction, but with thick shield (no muon activation) about 5 orders of magnitude in the region of natural radioactivity and 4-5 orders above 3.2 MeV without any shield (gamma rays due to n-interaction)

4 Laboratory for Underground Nuclear Astrophysics: LUNA
50 kV 400 kV 3.5 MV Beam: H,He Voltage Range : kV Output Current: ~1 mA Absolute Energy error ±300 eV Beam energy spread: <100 eV Long term stability (1 h) : 5 eV Terminal Voltage ripple: 5 Vpp Ge detector

5 e Hydrogen burning in the Sun @15*106 degrees: 6*1011 kg/s H He
+0.7% MH E e 4H He +2e+ + 2 MeV 3He burning in the p-p chain No ghost solar Gamow peak Activation=prompt gamma no monopole contribution to s s at low energy with 4% error

6 3He (3He,2p)4He Q = MeV Epmax= 10.7 MeV Suppression of 7Be and 8B e due to a resonance in 3He (3He,2p)4He which modifies the neutrino spectrum? H+, 3He+ beam Voltage Range: kV Output Current: 1 mA Beam energy spread: 20 eV Long term stability (8 h): 10-4 Terminal Voltage ripple: Windowless gas target 0.5 mbar) + 8 silicon detectors (5cmx5cm, 1mmthick)

7 smin=20 fb (2 events/month)
No resonance at the Gamow peak Nuclear astrophysics is not the reason for the suppression of e from the Sun

8 *½cno from the Sun * Globular Cluster age +1Gy
The CNO Cycle 278 7556 1/2 + 1) “High” energy: solid target + HpGe 7297 7276 7/2 + 2) Low energy: gas target + BGO 14N+p 14N(p,g)15O 6859 5/2 + -21 beam energy 90 keV 13C (p,g) 14N 15O b+ (p,a) 12C 13N 15N 6793 3/2 + - 504 6176 3/2 - 5241 5/2 + 5183 1/2 + (p,g) 15O 1/2 - 16O St(0)=1.57±0.13 keV b as reported by indirect measurements (Mukhamedzhanov et al. 2003) *½cno from the Sun * Globular Cluster age +1Gy * more C at the surface of AGB cno = F(S1,14,Zcore) probe of the metallicity Z of the Sun core

9 AGB stars (~30-100 T6), Nova nucleosynthesis (~100-400 T6) and BBN
LUNA beyond the Sun: isotope production in the hydrogen burning shell of AGB stars (~ T6), Nova nucleosynthesis (~ T6) and BBN Nova Cigni 1992

10 2H(α,g)6Li Q=1.47 MeV 22Ne(p,g)23Na Q=8.8 MeV 15N(p,g)16O Q=12.13 MeV
Isotopic abundances: how and where 15N(p,g)16O Q=12.13 MeV 25Mg(p,g)26Al Q=6.3 MeV 17O(p,g)18F Q=5.6 MeV 2H(α,g)6Li Q=1.47 MeV 17O(p,α)14N Q=1.2 MeV 22Ne(p,g)23Na Q=8.8 MeV 18O(p,α)15N Q=4.0 MeV 23Na(p,g)24Mg Q=11.7 MeV 18O(p,g)19F Q=8.0 MeV

11 ● Uncertainty on 16O, 17O and 19F at Nova temperature less than 10%
● First measurement of the 92 keV resonance in 25Mg(p, g)26Al, ωγ=(2.9±0.6)x 10-10eV. Production of 26Algs in H-burning regions is less efficientthan previously obtained (Sky 1.8 MeV) ● Uncertainty on 16O, 17O and 19F at Nova temperature less than 10% (from 40-50%) ● First measurement of D(α, g)6Li at the BBN energies: 6Li/7Li =(1.5±0.3)*10-5, no nuclear solution to the primordial 6Li problem

12 The Ne-Na Cycle 22Ne(p,g)23Na
Only upper limits (~μeV) on the strength of the resonances below 400 keV (factor 1000 on the reaction rate) Ne, Na, Mg and Al yield in AGB and Novae (up to a factor 100) 22Ne(p,g)23Na Q=8.8 MeV 103

13 ● 2 HPGe detectors collimated at 55° (130%) and 90° (88%)
● Windowless gas target with recirculation 22Ne enriched at 99.9%, effective target length: 8 cm ~ 4 keV ● 2 HPGe detectors collimated at 55° (130%) and 90° (88%) ● Cu+Pb (~ 30 cm) + anti-Radon shielding ● Resonances studied with a few neV strength sensitivity and 700 eV uncertainty on the energy ● 156.2, and keV resonances measured for the first time ● New upper limits on 71, 105 and 215 keV ● Yield measured at 291, 320 and 334 keV compatible with Direct Capture R. Depalo NPA VII York, 18 – 22 May 2015 12/25

14 PRELIMINARY Now: Windowless gas target + BGO high efficiency detector to study the low energy region. 71 and 105 keV (~0.01 neV strength sensitivity) + Direct Capture (D. Piatti talk tomorrow)

15 cno reduced by  2 with 8% error Sun core metallicity
3He (3He,2p)4He: s down to 16 keV no resonance within the solar Gamow Peak 3He(,g)7Be: 7Be ≈ prompt g cross section measured with 4% error 14N(p,g)15O: s down to 70 keV cno reduced by  2 with 8% error Sun core metallicity Globular cluster age increased by Gy More carbon at the surface of AGB stars 25Mg(p,g)26Al: first measurement of the 92 keV resonance, strength ωγ=(2.9±0.6)x eV Uncertainty on 16O, 17O and 19F from Novae less than 10% (from 40-50%) 22Ne(p,g)23Na: 3 resonances in the Nova region measured for the first time, high efficiency measurement running

16 The LUNA collaboration
A. Best, A. Boeltzig*, A. Formicola, S. Gazzana, I. Kochanek, M. Junker, L. Leonzi | INFN LNGS /*GSSI, Italy D. Bemmerer, M. Takacs, T. Szucs | HZDR Dresden, Germany C. Broggini, A. Caciolli, R. Depalo, R. Menegazzo, D. Piatti | Università di Padova and INFN Padova, Italy C. Gustavino | INFN Roma1, Italy Z. Elekes, Zs. Fülöp, Gy. Gyurky| MTA-ATOMKI Debrecen, Hungary O. Straniero | INAF Osservatorio Astronomico di Collurania, Teramo, Italy F. Cavanna, P. Corvisiero, F. Ferraro, P. Prati, S. Zavatarelli | Università di Genova and INFN Genova, Italy A. Guglielmetti, D. Trezzi | Università di Milano and INFN Milano, Italy A. Di Leva, G. Imbriani, | Università di Napoli and INFN Napoli, Italy G. Gervino | Università di Torino and INFN Torino, Italy M. Aliotta, C. Bruno, T. Davinson | University of Edinburgh, United Kingdom G.F. Ciani, G. D’Erasmo, E.M. Fiore, V. Mossa, F. Pantaleo, V. Paticchio, R. Perrino, L. Schiavulli, A. Valentini| Università di Bari and INFN Bari, Italy


Download ppt " s 2ph = Z1Z2 m/E m = m1m2 / (m1+m2), E in keV"

Similar presentations


Ads by Google