Presentation is loading. Please wait.

Presentation is loading. Please wait.

Summary of the non-accelerator particle physics workshop session

Similar presentations


Presentation on theme: "Summary of the non-accelerator particle physics workshop session"— Presentation transcript:

1 Summary of the non-accelerator particle physics workshop session
Stefan Schönert, TUM KET Strategie Workshop, Dortmund, 25/

2 Topics in workshop session
Direct neutrino mass measurement: Katrin & beyond - C. Weinheimer Neutrino-less double beta decay: exploring the inverse mass hierarchy - K. Zuber (Cobra), B. Majorovits (GERDA & Majorana) Proton decay & neutrino astrophysics with LENA: L. Oberauer Direct Dark Matter search: Eureca & Xenon: J. Jochum Proton decay & neutrino astrophysics with low-energy extension of IceCube DeepCore ….could not discuss many other interesting things… U. Oberlack  DM plenary talk C. Spiering  KAT/Astroparticle plenary talk

3 The unknown neutrino properties and how to unravel them
Hierarchy ? 13 Mass scale  =  ? : 13  0 Accelerator Exp. Beta Endpoint Double Beta Decay Reactor Exp. Atmos. Exp. CP phases , ,

4 The neutrino energy scale & experiments
-decay Katrin (Mare, P8) reactor accelerator Kamland 1 keV 10 keV 100 keV 1 MeV Adopted from T. DeYoung astrophysical

5

6 After 3 live years: German participants:
KIT, Münster, Mainz, Bonn, MPIK After 3 live years:

7  C.W.: “beyond 100 meV not fully unfeasible”

8 The neutrino energy scale & experiments
0 -decay Katrin (Mare, P8) reactor accelerator Kamland 1 keV 10 keV 100 keV 1 MeV Adopted from T. DeYoung astrophysical

9 0- and 2 decay 2: (A,Z)  (A,Z+2) + 2e- + 2ne
odd-odd L=0 even-even 0: (A,Z)  (A,Z+2) + 2e- L=2 2 Experimental signatures: peak at Q = Ee1 + Ee2 - 2me two electrons from vertex production of grand-daughter isotope arbitrary units 0 Energy (keV)

10 Decay rate and effective neutrino mass
Expected decay rate: Phase space integral Nuclear matrix element Q-value of decay Assume leading term is exchange of light Majorana neutrinos Effective neutrino mass (complex) neutrino mixing matrix

11 0: physics implications
1) Dirac vs. Majorana particle: (i.e. its own anti-particle)?  0  Majorana nature  Majorana  See-Saw mechanism  Majorana  CP violation in MR  higgs + lepton  Leptogenesis  B asymmetry 2) Absolute mass scale:  Hierarchy: degenerate, inverted or normal  (effective) neutrino mass

12 Predictions from oscillation experiments
F.Feruglio, A. Strumia, F. Vissani, NPB 659 90% CL Negligible errors from oscillations; width due to CP phases

13 Predictions from oscillation experiments
KDKC claim: [ ] eV (PRD79) F.Feruglio, A. Strumia, F. Vissani, NPB 659 Goal of next generation experiments: ~10 meV 90% CL Negligible errors from oscillations; width due to CP phases

14 QRPA IBM2 SM (Simkovic et al. PRC 77, 2008) ~4
(Barea and Iachello, PRC 79, 2009) ~3 SM (Caurier et al., PRL 100, 2008) ~4

15 Overview of Experiments
Name Nucleus Mass* Method Location Time line Operational & recently completed experiments CUORICINO Te-130 11 kg bolometric LNGS NEMO-3 Mo-100/Se-82 6.9/0.9 kg tracko-calo LSM until 2010 Construction funding CUORE 200 kg 2012 EXO-200 Xe-136 160 kg liquid TPC WIPP 2010 GERDA I/II Ge-76 40 kg ionization SNO+ Nd-150 56 kg scintillation SNOlab 2011 Substantial R&D funding / prototyping CANDLES Ca-48 0.35 kg Kamioka 2009 Majorana 26 kg SUSL NEXT 80 kg gas TPC Canfranc 2013 SuperNEMO Se-82 or Nd-150 100 kg 2012 (first mod.) R&D and/or conceptual design CARVEL tbd Solotvina COBRA Cd-116, Te-130 tbd  DCBA drift chamber EXO gas MOON Mo-100 tracking Oto Other decay modes TGV Cd-106 operational Overview of Experiments *: mass of DBD-isotopes; detector & analysis inefficiencies NOT included! Range: 18% to ~90%

16 Two new 76Ge Projects: LoI Majorana GERDA @ LNGS
‘Bare’ enrGe array in liquid argon Shield: high-purity liquid Argon / H2O Phase I: 18 kg (HdM/IGEX) / 15 kg nat. Phase II: add ~20 kg new enr. Detectors; total ~40 kg Array(s) of enrGe housed in high-purity electroformed copper cryostat Shield: electroformed copper / lead Initial phase: R&D demonstrator module: Total ~60 kg (30 kg enr.) Physics goals: degenerate mass range Technology: study of bgds. and exp. techniques open exchange of knowledge & technologies (e.g. MaGe MC) intention to merge for O(1 ton) exp. ( inv. Hierarchy) selecting the best technologies tested in GERDA and Majorana LoI

17 Nov/Dec.’09: Liquid argon fill
Jan ’10: Commissioning of cryogenic system Apr/Mai ’10: emergency drainage tests of water tank Apr/Mai ’10: Installation c-lock May ’10: 1st deployment of FE&detector mock-up June ‘10: Commissioning with natGe detector string Soon: start Phase I physics data taking German participants: MPIK, MPP, Tübingen, Dresden, new: TUM

18 Phases and physics reach
2·1027 (90 % CL) * < meV 2·1026 (90 % CL) * < meV assuming |M0|= [Smol&Grab PRC’10] and 86% enrichment 3·1025 (90 % CL)* GERDA Phase II/ Majorana Demonst. KK GERDA Phase III/ Majorana GERDA Phase I *: no event in ROI required for ‘background free’ exp. with E~3.3 keV (FWHM): O(10-3) O(10-4) counts/(kg·y·keV) Background requirement for GERDA/Majorana: Background reduction by factor required w.r. to precursor exps. Degenerate mass scale O(102 kg·y)  Inverted mass scale O(103 kg·y)

19 Example for GERDA R&D for a 1 ton experiment: instrumentation of LAr
Source run with GERDA LArGe facility Survival ~2 10-4 also R&D with fibres and SiPM GERDA-LArGe LNGS

20 Cobra: R&D for solid state CdZnTe TPC for 0
German participants: Dresden, Dortmund, Freiburg, Erlangen, Hamburg

21 Liquid Scintillators are well known as neutrino targets
Poltergeist ~ 1 t Double-Chooz ~ 10 t KamLAND ~ 1000 t SNO+ ~ 1000 t BOREXINO ~ 300 t 21

22 The neutrino energy scale & experiments
0 -decay Katrin (Mare, P8) reactor accelerator Kamland Borexino 1 keV 10 keV 100 keV 1 MeV Adopted from T. DeYoung astrophysical

23 Recent results from Borexino
German participants: MPIK, TUM 8-B 7-Be Solar neutrinos: 7-Be, 8-B Geo-neutrinos

24 The neutrino energy scale & experiments
0 -decay Katrin (Mare, P8) reactor accelerator Double Chooz Kamland Borexino 1 keV 10 keV 100 keV 1 MeV Adopted from T. DeYoung astrophysical

25 Double Chooz: measurement of 13
Near detector 400 Far detector 1050 m Breaking news: liquid scintillator filling started in October  Physics data taking planned for early 2011 German participants: MPIK, TUM, Tübingen, Aachen, Hamburg

26 The neutrino energy scale & experiments
0 -decay Katrin (Mare, P8) reactor accelerator Double Chooz Kamland LENA Borexino 1 keV 10 keV 100 keV 1 MeV Adopted from T. DeYoung astrophysical

27 LENA – Low Energy Neutrino Astronomy ~50 kt liquid scintillator deep underground detector
Physics program: Proton Decay Galactic Supernova Burst Diffuse Supernova Neutrino Background Long baseline neutrino oscillations Solar Neutrinos Geo neutrinos Reactor neutrinos Neutrino oscillometry Atmospheric neutrinos Dark Matter indirect search 27

28 Proton decay in LENA K m, p p e+ p0  1033 y (work progress)
High efficiency (68%) for p  K+   5 x 1034 y p e+ p  1033 y (work progress) K m, p Latest developments: Full event reconstruction under study: “LS as optical TPC” Site study for Pyhäsalmi completed (FP7) White paper under preparation (German contributions to white paper: TUM, Aachen, Hamburg, HGF, …..)

29 The neutrino energy scale & experiments
0 -decay Katrin (Mare, P8) reactor accelerator Double Chooz Kamland Borexino 1 keV 10 keV 100 keV LENA 1 MeV IceCube Low-E extension Adopted from T. DeYoung astrophysical

30 indirect search for dark matter
Goals: indirect search for dark matter • atmospheric neutrinos: -oscillations • neutrino sources in Southern Hemisphere German contributions: Aachen, MPIK, Wuppertal, Dortmund, Mainz, Zeuthen, Humbold Univ. Berlin

31 Feasibility study for IceCube DeepCore low-energy extension: A Megaton Cherenkov Ring Imager in Ice
Physics goals: proton decay: target channel p → 0 + e+ with τp~ y indirect DM • supernova neutrinos hep solar neutrinos • Neutrino physics Atmospheric  long baseline  Existing experimental infrastructure at South pole; experience with string deployment; physics data taking during detector extension goal: 10 MeV energy threshold

32 Summary & future projects
Direct DM search: 1 ton experiment  U. Oberlack’s talk Direct  mass measurement < 100 meV (beyond KATRIN) challenging, however there are new ideas! Neutrino-less double beta decay (0): GERDA phase I/II under preparation  prototype for 1 ton experiment (GERDA/Majorana) Cobra R&D for solid state TPC No time to discuss mentioned: SNO+ participation TU Dresden (Zube) EXO participation of group at TUM (Fierlinger) studies Ba tagging Liquid scintillator projects Borexino: precision measurements of solar-’s, reactor- and geo- detection Double Chooz near detector filling started; far detector to be constructed Proton decay & neutrino astronomy with LENA Water (Ice) Cherenkov Design studay for proton decay & neutrino astrophysics with low-energy extension of IceCube DeepCore


Download ppt "Summary of the non-accelerator particle physics workshop session"

Similar presentations


Ads by Google