Presentation is loading. Please wait.

Presentation is loading. Please wait.

Semantic Analysis Chapter 6.

Similar presentations


Presentation on theme: "Semantic Analysis Chapter 6."— Presentation transcript:

1 Semantic Analysis Chapter 6

2 Two Flavors Static (done during compile time)
Ada Dynamic (done during run time) LISP Smalltalk Optimization

3 Static Semantic Analysis
Build symbol table Keep track of declarations Perform type checking

4 Static Analysis Description Implementation Attributes (properties)
Attribute equations (semantic rules) Application of rules Syntax-directed semantics

5 General Attribute Property of the Language Data type
Value of expressions Location of variables in memory Object code of procedure Number of Significant digits

6 Specific Attributes Parameters/Arguments type
Parameters/Arguments number Array subscript type Array subscript number Continue with no place to continue to Variable undeclared Variable duplicately declared Scope Incorrect structure reference

7 Specific Attributes Cont.
Break inappropriate Incorrect Return Wrong type Array None when needed (void) No main Two main’s Constant on left side Expression types

8 Binding Time of Attributes
Static - prior to execution Fortran Dynamic - during execution Combination C Java Pascal

9 Attribute Grammars X is grammar symbol, Xa is an attribute for this symbol X ABCD (grammar) X.x = A.a B.b C.c D.d (attribute grammar)

10 Attribute Grammar Example
E1  E2 + T E1.type = E2.type + T.type

11 Attribute Grammar Example
decl  type var-list var-list.dtype =type.dtype type  int type.dtype = integer type  float type.dtype = float var-list1  id, var-list2 id.dtype = var-list1.dtype var-list2.dtype = var-list1.dtype var-list  id id.dtype = var-list.dtype

12 Attribute Grammar Comments
Symbols may have more than one attribute The grammar is not the master More of a guide

13 Attribute Grammar Example
E1  E2 + T E1.tree = mkOpNode(+, E2.tree, T.tree) E  T E.tree = T.tree F  number F.tree = mkNumNode(number.lexval)

14 Attribute Up and Down Dependency Tree
Synthesized Point from child to parent Inherited Point child to child or parent to child

15 Symbol Tables Lists of Lists Hash …
Collision resolving by use of buckets Collision resolving by probing

16 Symbol Tables Keep track of identifiers
Must deal with scope efficiently

17 Code Fragment int f(int size) { char i, temp; … { double j, i; }
{ char * j; *j = i = 5;

18 Static vs Dynamic Scope
int i = 1; void f(void) { printf(“%d\n”,i); } void main(void) { int i = 2; f(); return; What is printed?

19 Kinds of Declarations sequential collateral recursive C scheme ML
requires the function name to be added to the symbol table before processing the body of the function

20 Example - Sequential/Colateral
int i = 1; void f(void) { int i = 2, j = i + 1; } Is j 2 or 3?

21 Example - Recursive int gcd(int n, int m) { if (m == 0) return n;
else return gcd(m, n%m); } gcd must be added to the symbol table before processing the body

22 Example - Recursive void f(void) { … g() … } void g(void) { … f() … }
Resolved by using prototype. Actually, this didn’t create a problem.

23 Data Types – Type Checking
Explicit datatype int x Implicit datatype #define x 5

24 Implementation of Types
Hardware implementation int double float Software implementation boolean char enum – can be integers to save space

25 More Complicated Types
Arrays base(b)+i*esize base(ar)+(i1*r2 +i2)*esize Records allocate memory sequentially base+displacement

26 Type Checking Statements
S  id = E S.type = if id.type = E.type then void else error S  if E then S1 S.type=if E.type=boolean then S1.type

27 Equivalence of type Expressions
Structural Equivalence two expressions are either the same basic type, or are formed by applying the same constructor to structurally equivalent types. IE equivalent only if they are identical. Name Equivalence The following is structurally equivalent, not name typedef link = *cell link next; cell * p;

28 Name Equivalence typedef int t1; typedef int t2;
t2 and t1 are not the same type. int typeEqual(t1, t2) { if (t1 and t2 are simple types) return t1 == t2; if (t1 and t2 are type names) else return 0;} in case you read the text


Download ppt "Semantic Analysis Chapter 6."

Similar presentations


Ads by Google