Download presentation
Presentation is loading. Please wait.
Published byelaicca ronna ordona Modified over 6 years ago
1
Kruskal’s Algorithm Elaicca Ronna Ordoña
2
A cable company want to connect five villages to their network which currently extends to the market town of Avonford. What is the minimum length of cable needed? Avonford Fingley Brinleigh Cornwell Donster Edan 2 7 4 5 8 6 4 5 3 8 Example
3
A F B C D E 2 7 4 5 8 6 4 5 3 8
4
The steps are: 1. Sort all the the weight of the edges in ascending order. 2. Pick the smallest edge. Check if it forms a cycle with the spanning tree formed so far. If cycle is not formed, include this edge. Else, discard it. 3. Repeat step#2 until there are (V-1) edges in the spanning tree.
5
A F B C D E 2 7 4 5 8 6 4 5 3 8 List the edges in order of size: ED 2 AB 3 AE 4 CD 4 BC 5 EF 5 CF 6 AF 7 BF 8 CF 8 Kruskal’s Algorithm
6
Select the shortest edge in the network ED 2 Kruskal’s Algorithm A F B C D E 2 7 4 5 8 6 4 5 3 8
7
Select the next shortest edge which does not create a cycle ED 2 AB 3 Kruskal’s Algorithm A F B C D E 2 7 4 5 8 6 4 5 3 8
8
Select the next shortest edge which does not create a cycle ED 2 AB 3 CD 4 (or AE 4) Kruskal’s Algorithm A F B C D E 2 7 4 5 8 6 4 5 3 8
9
Select the next shortest edge which does not create a cycle ED 2 AB 3 CD 4 AE 4 Kruskal’s Algorithm A F B C D E 2 7 4 5 8 6 4 5 3 8
10
Select the next shortest edge which does not create a cycle ED 2 AB 3 CD 4 AE 4 BC 5 – forms a cycle EF 5 Kruskal’s Algorithm A F B C D E 2 7 4 5 8 6 4 5 3 8
11
All vertices have been connected. The solution is ED 2 AB 3 CD 4 AE 4 EF 5 MST: 18 Kruskal’s Algorithm A F B C D E 2 7 4 5 8 6 4 5 3 8
12
4 1 2 3 2 1 3 5 3 4 2 56 4 4 10 A BC D E F G H I J Complete Graph
13
1 4 2 5 2 5 4 3 4 4 4 10 1 6 3 3 2 1 2 3 2 1 3 5 3 4 2 56 4 4 A BC D E F G H I J AABD BB B CD JC C E F D DH JEG FFGI GGIJ HJJI
14
2 5 2 5 4 3 4 4 1 6 3 3 2 1 2 3 2 1 3 5 3 4 2 56 4 4 A BC D E F G H I J B B D J C C E F D DH J EG F F G I G G I J HJ JI 1 AD 4 BC 4 AB Sort Edges
15
2 5 2 5 4 3 4 4 10 1 6 3 3 2 1 2 3 2 1 3 5 3 4 2 56 4 4 A BC D E F G H I J B B D J C C E F D DH J EG F F G I G G I J HJ JI 1 AD 4 BC 4 AB Add Edge
16
2 5 2 5 4 3 4 4 10 1 6 3 3 2 1 2 3 2 1 3 5 3 4 2 56 4 4 A BC D E F G H I J B B D J C C E F D DH J EG F F G I G G I J HJ JI 1 AD 4 BC 4 AB Add Edge
17
2 5 2 5 4 3 4 4 10 1 6 3 3 2 1 2 3 2 1 3 5 3 4 2 56 4 4 A BC D E F G H I J B B D J C C E F D DH J EG F F G I G G I J HJ JI 1 AD 4 BC 4 AB Add Edge
18
2 5 2 5 4 3 4 4 10 1 6 3 3 2 1 2 3 2 1 3 5 3 4 2 56 4 4 A BC D E F G H I J B B D J C C E F D DH J EG F F G I G G I J HJ JI 1 AD 4 BC 4 AB Add Edge
19
2 5 2 5 4 3 4 4 10 1 6 3 3 2 1 2 3 2 1 3 5 3 4 2 56 4 4 A BC D E F G H I J B B D J C C E F D DH J EG F F G I G G I J HJ JI 1 AD 4 BC 4 AB Add Edge
20
2 5 2 5 4 3 4 4 10 1 6 3 3 2 1 2 3 2 1 3 5 3 4 2 56 4 4 A BC D E F G H I J B B D J C C E F D DH J EG F F G I G G I J HJ JI 1 AD 4 BC 4 AB Cycle Don’t Add Edge
21
2 5 2 5 4 3 4 4 10 1 6 3 3 2 1 2 3 2 1 3 5 3 4 2 56 4 4 A BC D E F G H I J B B D J C C E F D DH J EG F F G I G G I J HJ JI 1 AD 4 BC 4 AB Add Edge
22
2 5 2 5 4 3 4 4 10 1 6 3 3 2 1 2 3 2 1 3 5 3 4 2 56 4 4 A BC D E F G H I J B B D J C C E F D DH J EG F F G I G G I J HJ JI 1 AD 4 BC 4 AB Add Edge
23
2 5 2 5 4 3 4 4 10 1 6 3 3 2 1 2 3 2 1 3 5 3 4 2 56 4 4 A BC D E F G H I J B B D J C C E F D DH J EG F F G I G G I J HJ JI 1 AD 4 BC 4 AB Add Edge
24
2 5 2 5 4 3 4 4 10 1 6 3 3 2 1 2 3 2 1 3 5 3 4 2 56 4 4 A BC D E F G H I J B B D J C C E F D DH J EG F F G I G G I J HJ JI 1 AD 4 BC 4 AB Cycle Don’t Add Edge
25
2 5 2 5 4 3 4 4 10 1 6 3 3 2 1 2 3 2 1 3 5 3 4 2 56 4 4 A BC D E F G H I J B B D J C C E F D DH J EG F F G I G G I J HJ JI 1 AD 4 BC 4 AB Add Edge
26
4 1 2 2 1 3 3 2 4 A BC D E F G H I J 4 1 2 3 2 1 3 5 3 4 2 56 4 4 10 A BC D E F G H I J Minimum Spanning TreeComplete Graph
Similar presentations
© 2025 SlidePlayer.com. Inc.
All rights reserved.