Presentation is loading. Please wait.

Presentation is loading. Please wait.

General Strong Polarization

Similar presentations


Presentation on theme: "General Strong Polarization"β€” Presentation transcript:

1 General Strong Polarization
Madhu Sudan Harvard University Joint work with Jaroslaw Blasiok (Harvard), Venkatesan Gurswami (CMU), Preetum Nakkiran (Harvard) and Atri Rudra (Buffalo) August 11, 2017 IITB: General Strong Polarization

2 Shannon and Channel Capacity
Shannon [β€˜48]: For every (noisy) channel of communication, βˆƒ capacity 𝐢 s.t. communication at rate 𝑅<𝐢 is possible and 𝑅>𝐢 is not. Needs lot of formalization – omitted. Example: Acts independently on bits Capacity =1 – 𝐻(𝑝) ; 𝐻(𝑝) = binary entropy! 𝐻 𝑝 =𝑝⋅ log 1 𝑝 + 1βˆ’π‘ β‹… log 1 1βˆ’π‘ π‘‹βˆˆ 𝔽 2 𝑋 w.p. 1βˆ’π‘ 1βˆ’π‘‹ w.p. 𝑝 𝐡𝑆𝐢(𝑝) August 11, 2017 IITB: General Strong Polarization

3 β€œAchieving” Channel Capacity
Commonly used phrase. Many mathematical interpretations. Some possibilities: How small can 𝑛 be? Get 𝑅>πΆβˆ’πœ– with polytime algorithms? [Luby et al.’95] Make running time poly 1 πœ– ? Open till 2008 Arikan’08: Invented β€œPolar Codes” … Final resolution: Guruswami+Xia’13, Hassani+Alishahi+Urbanke’13 – Strong analysis Shannon β€˜48 : 𝑛=𝑂 πΆβˆ’π‘… βˆ’2 Forney β€˜66 :time =π‘π‘œπ‘™π‘¦ 𝑛, πœ– 2 August 11, 2017 IITB: General Strong Polarization

4 Context for today’s talk
[Arikan’08]: General class of codes. [GX’13, HAU’13]: One specific code within. Why? Bottleneck: Strong Polarization Arikan et al.: General class polarizes [GX,HAU]: Specific code polarizes strongly! This work/talk: Introduce Local Polarization Local β‡’ Strong Polarization Thm: All known codes that polarize also polarize strongly! August 11, 2017 IITB: General Strong Polarization

5 IITB: General Strong Polarization
This talk: What are Polar Codes β€œLocal vs. Global” (Strong) Polarization Analysis of Polarization August 11, 2017 IITB: General Strong Polarization

6 Lesson 0: Compression β‡’ Coding
Linear Compression Scheme: 𝐻,𝐷 for compression scheme for bern 𝑝 𝑛 if Linear map 𝐻: 𝔽 2 𝑛 β†’ 𝔽 2 π‘š Pr π‘βˆΌbern 𝑝 𝑛 𝐷 𝐻⋅𝑍 ≠𝑍 β‰€πœ– Hopefully π‘š 𝑛 →𝐻(𝑝) Compression β‡’ Coding Let 𝐻 βŠ₯ be such that 𝐻⋅𝐻 βŠ₯ =0; Encoder: 𝑋↦ 𝐻 βŠ₯ ⋅𝑋 Error-Corrector: π‘Œ= 𝐻 βŠ₯ ⋅𝑋+πœ‚β†¦π‘Œβˆ’π· π»β‹…π‘Œ = 𝑀.𝑝. 1βˆ’πœ– 𝐻 βŠ₯ ⋅𝑋 August 11, 2017 IITB: General Strong Polarization

7 Question: How to compress?
Arikan’s key idea: Start with 2Γ—2 β€œPolarization Transform”: π‘ˆ,𝑉 β†’ π‘ˆ+𝑉,𝑉 Invertible – so does nothing? If π‘ˆ,𝑉 independent, then π‘ˆ+𝑉 β€œmore random” than either 𝑉 | π‘ˆ+𝑉 β€œless random” than either Iterate (ignoring conditioning) End with bits that are completely random, or completed determined (by others). Output β€œtotally random part” to get compression! August 11, 2017 IITB: General Strong Polarization

8 Information Theory Basics
Entropy: Defn: for random variable π‘‹βˆˆΞ©, 𝐻 𝑋 = π‘₯∈Ω 𝑝 π‘₯ log 1 𝑝 π‘₯ where 𝑝 π‘₯ = Pr 𝑋=π‘₯ Bounds: 0≀𝐻 𝑋 ≀ log Ξ© Conditional Entropy Defn: for jointly distributed 𝑋,π‘Œ 𝐻 𝑋 π‘Œ = 𝑦 𝑝 𝑦 𝐻(𝑋|π‘Œ=𝑦) Chain Rule: 𝐻 𝑋,π‘Œ =𝐻 𝑋 +𝐻(π‘Œ|𝑋) Conditioning does not increase entropy: 𝐻 𝑋 π‘Œ ≀𝐻(𝑋) Equality ⇔ Independence: 𝐻 𝑋 π‘Œ =𝐻 𝑋 ⇔ 𝑋βŠ₯π‘Œ August 11, 2017 IITB: General Strong Polarization

9 Iteration by Example: 𝐴,𝐡,𝐢,𝐷 β†’ 𝐴+𝐡+𝐢+𝐷,𝐡+𝐷,𝐢+𝐷, 𝐷
𝐸,𝐹,𝐺,𝐻 β†’ 𝐸+𝐹+𝐺+𝐻,𝐹+𝐻,𝐺+𝐻,𝐻 𝐡+𝐷 𝐹+𝐻 𝐡+𝐷+𝐹+𝐻 𝐻 𝐡+𝐷 𝐴+𝐡+𝐢+𝐷) 𝐻 𝐡+𝐷+𝐹+𝐻| 𝐴+𝐡+𝐢+𝐷, 𝐸+𝐹+𝐺+𝐻 𝐻 𝐹+𝐻| 𝐴+𝐡+𝐢+𝐷, 𝐸+𝐹+𝐺+𝐻. 𝐡+𝐷+𝐹+𝐻 𝐻 𝐹+𝐻 𝐸+𝐹+𝐺+𝐻) August 11, 2017 IITB: General Strong Polarization

10 IITB: General Strong Polarization
Algorithmics Summary: Iterating 𝑑 times yields 𝑛×𝑛-polarizing transform for 𝑛= 2 𝑑 : (𝑍 1 ,…, 𝑍 𝑛 )β†’( π‘Š 1 ,…, π‘Š 𝑛 ) β†’ π‘Š 𝑆 ( 𝑆 β‰ˆπ» 𝑝 ⋅𝑛) Encoding/Compression: Clearly poly time. Decoding/Decompression: β€œSuccessive cancellation decoder”: implementable in poly time. Can compute Pr π‘βˆΌbern(𝑝) π‘Š 𝑖 =1 | π‘Š <𝑖 recursively Can reduce both run times to 𝑂(𝑛 log 𝑛) Only barrier: Determining 𝑆 Resolved by [Tal-Vardy’13] August 11, 2017 IITB: General Strong Polarization

11 Analysis: The Polarization martingale
Martingale: Sequence of r.v., 𝑋 0 , 𝑋 1 ,… βˆ€π‘–, π‘₯ 0 ,…, π‘₯ π‘–βˆ’1 , 𝔼 𝑋 𝑖 | π‘₯ 0 ,…, π‘₯ π‘–βˆ’1 = π‘₯ π‘–βˆ’1 Polarization martingale: 𝑋 𝑖 = Conditional entropy of random output at 𝑖th stage. Why martingale? At 𝑖th stage two inputs take (π‘ˆ,𝐴); (𝑉,𝐡) Output = (π‘ˆ+𝑉, Aβˆͺ𝐡) and 𝑉, 𝐴βˆͺ𝐡βˆͺπ‘ˆ+𝑉 Input entropies = π‘₯ π‘–βˆ’1 (𝐻 π‘ˆ 𝐴 =𝐻 𝑉 𝐡 = π‘₯ π‘–βˆ’1 ) β‡’ Output entropies average to π‘₯ π‘–βˆ’1 𝐻 π‘ˆ+𝑉 𝐴,𝐡 +𝐻 𝑉 𝐴,𝐡,π‘ˆ+𝑉 =2 π‘₯ π‘–βˆ’1 August 11, 2017 IITB: General Strong Polarization

12 IITB: General Strong Polarization
Quantitative issues How β€œquickly” does this martingale converge? (πœ†) How β€œwell” does it converge? πœ– Formally, want: Pr 𝑋 𝑑 ∈ πœ†,1βˆ’πœ† β‰€πœ– πœ–: Gives gap to capacity πœ†: Governs decoding failure β‰ˆπ‘›β‹… πœ† Reminder: 𝑛= 2 𝑑 For useable code, need: πœ†β‰ͺ 4 βˆ’π‘‘ For poly 1 πœ– block length, need: πœ–β‰€ 𝛼 𝑑 , 𝛼<1 August 11, 2017 IITB: General Strong Polarization

13 Regular and Strong Polarization
(Regular) Polarization: βˆ€π›Ύ>0, Lim π‘‘β†’βˆž Pr 𝑋 𝑑 ∈ 𝛾 𝑑 ,1βˆ’ 𝛾 𝑑 β†’0. Strong Polarization: βˆ€π›Ύ>0 βˆƒπ›Ό>0 βˆ€π‘‘, Pr 𝑋 𝑑 ∈ 𝛾 𝑑 , 1βˆ’ 𝛾 𝑑 ≀ 𝛼 𝑑 Both β€œglobal” properties (large 𝑑 behavior) Construction yields: Local Property How does 𝑋 𝑖 relate to 𝑋 π‘–βˆ’1 ? Local vs. Global Relationship? Regular polarization well understood. Strong understood only π‘ˆ,𝑉 ↦(π‘ˆ+𝑉,𝑉) What about π‘ˆ,𝑉,π‘Š ↦ π‘ˆ+𝑉,𝑉,π‘Š ?, more generally? August 11, 2017 IITB: General Strong Polarization

14 IITB: General Strong Polarization
General Polarization Basic underlying ingredient π‘€βˆˆ 𝔽 2 π‘˜Γ—π‘˜ Local polarization step: Pick π‘ˆ 𝑗 , 𝐴 𝑗 π‘—βˆˆ[π‘˜] i.i.d. One step: generate 𝐿 1 ,…, 𝐿 π‘˜ =𝑀⋅ π‘ˆ 1 ,…, π‘ˆ π‘˜ 𝑋 π‘–βˆ’1 =𝐻 π‘ˆ 𝑗 | βˆͺ β„“ 𝐴 β„“ , π‘ˆ <𝑗 =𝐻 π‘ˆ 𝑗 | 𝐴 𝑗 𝑋 𝑖 =𝐻 𝐿 𝑗 | βˆͺ β„“ 𝐴 β„“ , 𝐿 <𝑗 Examples 𝐻 2 = ; 𝐻 3 β€² = Which matrices polarize? Strongly? August 11, 2017 IITB: General Strong Polarization

15 IITB: General Strong Polarization
Mixing matrices Observation 1: Identity matrix does not polarize. Observation 1’: Upper triangular matrix does not polarize. Observation 2: (Row) permutation of non-polarizing matrix does not polarize! Corresponds to permuting π‘ˆ 1 ,…, π‘ˆ π‘˜ Definition: 𝑀 mixing if no row permutation is upper-triangular. [KSU]: 𝑀 mixing β‡’ martingale polarizes. [Our main theorem]: 𝑀 mixing β‡’ martingale polarizes strongly. August 11, 2017 IITB: General Strong Polarization

16 Key Concept: Local (Strong) Polarization
Martingale 𝑋 0 , 𝑋 1 ,… locally polarizes if it exhibits Variance in the middle: βˆ€πœ>0 βˆƒπœŽ>0, Var 𝑋 𝑖 𝑋 π‘–βˆ’1 ∈ 𝜏,1βˆ’πœ >𝜎 Suction at the end: βˆƒπœƒ>0 βˆ€π‘<∞, βˆƒπœ>0 Pr 𝑋 𝑖 < 𝑋 π‘–βˆ’1 𝑐 | 𝑋 π‘–βˆ’1 β‰€πœ β‰₯πœƒ (similarly with 1 βˆ’ 𝑋 𝑖 ) Definition local: compares 𝑋 𝑖 with 𝑋 π‘–βˆ’1 Implications global: Thm 1: Local Polarization β‡’ Strong Polarization. Thm 2: Mixing matrices β‡’ Local Polarization. August 11, 2017 IITB: General Strong Polarization

17 Mixing Matrices β‡’ Local Polarization
2Γ—2 case: Ignoring conditioning, we have 𝐻 𝑝 β†’ 𝐻 2𝑝 1βˆ’π‘ w.p 𝐻 𝑝 βˆ’π» 2𝑝 1βˆ’π‘ w.p Variance, Suction ⇐ Taylor series for log . … π‘˜Γ—π‘˜ case: Reduction to 2Γ—2 case: probs. β†’βˆΌ 1 π‘˜ August 11, 2017 IITB: General Strong Polarization

18 Local β‡’ (Global) Strong Polarization
Step 1: Medium Polarization: βˆƒπ›Ό,𝛽<1 Pr 𝑋 𝑑 ∈ 𝛽 𝑑 ,1βˆ’ 𝛽 𝑑 ≀ 𝛼 𝑑 Proof: Potential Ξ¦ 𝑑 =𝔼 min 𝑋 𝑑 , 1βˆ’ 𝑋 𝑑 Variance+Suction β‡’ βˆƒπœ‚<1 s.t. Ξ¦ 𝑑 β‰€πœ‚β‹… πœ™ π‘‘βˆ’1 (Aside: Why 𝑋 𝑑 ? Clearly 𝑋 𝑑 won’t work. And 𝑋 𝑑 2 increases!) β‡’ Ξ¦ 𝑑 ≀ πœ‚ 𝑑 β‡’ Pr 𝑋 𝑑 ∈ 𝛽 𝑑 ,1βˆ’ 𝛽 𝑑 ≀ πœ‚ 𝛽 𝑑 August 11, 2017 IITB: General Strong Polarization

19 Local β‡’ (Global) Strong Polarization
Step 1: Medium Polarization: βˆƒπ›Ό,𝛽<1 Pr 𝑋 𝑑 ∈ 𝛽 𝑑 ,1βˆ’ 𝛽 𝑑 ≀ 𝛼 𝑑 Step 2: Medium Polarization + 𝑑-more steps β‡’ Strong Polarization: Proof: Assume 𝑋 0 ≀ 𝛼 𝑑 ; Want 𝑋 𝑑 ≀ 𝛾 𝑑 w.p. 1 βˆ’π‘‚ 𝛼 1 𝑑 Pick 𝑐 large & 𝜏 s.t. Pr 𝑋 𝑖 < 𝑋 π‘–βˆ’1 𝑐 | 𝑋 π‘–βˆ’1 β‰€πœ β‰₯πœƒ 2.1: Pr βˆƒπ‘– 𝑠.𝑑. 𝑋 𝑖 β‰₯𝜏 ≀ 𝜏 βˆ’1 β‹… 𝛼 𝑑 (Doob’s Inequality) 2.2: Let π‘Œ 𝑖 = log 𝑋 𝑖 ; Assuming 𝑋 𝑖 β‰€πœ for all 𝑖 π‘Œ 𝑖 βˆ’ π‘Œ π‘–βˆ’1 β‰€βˆ’ log 𝑐 w.p. β‰₯πœƒ; & β‰₯π‘˜ w.p. ≀ 2 βˆ’π‘˜ . 𝔼xp π‘Œ 𝑑 β‰€βˆ’π‘‘ log 𝑐 πœƒ +1 ≀2𝑑⋅ log 𝛾 Concentration! Pr π‘Œ 𝑑 β‰₯𝑑⋅ log 𝛾 ≀ 𝛼 2 𝑑 QED! August 11, 2017 IITB: General Strong Polarization

20 IITB: General Strong Polarization
Conclusion Simple General Analysis of Strong Polarization But main reason to study general polarization: Maybe some matrices polarize even faster! This analysis does not get us there. But hopefully following the (simpler) steps in specific cases can lead to improvements. August 11, 2017 IITB: General Strong Polarization

21 IITB: General Strong Polarization
Thank You! August 11, 2017 IITB: General Strong Polarization


Download ppt "General Strong Polarization"

Similar presentations


Ads by Google