Download presentation
Presentation is loading. Please wait.
1
General Strong Polarization
Madhu Sudan Harvard University Joint work with Jaroslaw Blasiok (Harvard), Venkatesan Gurswami (CMU), Preetum Nakkiran (Harvard) and Atri Rudra (Buffalo) August 11, 2017 IITB: General Strong Polarization
2
Shannon and Channel Capacity
Shannon [β48]: For every (noisy) channel of communication, β capacity πΆ s.t. communication at rate π
<πΆ is possible and π
>πΆ is not. Needs lot of formalization β omitted. Example: Acts independently on bits Capacity =1 β π»(π) ; π»(π) = binary entropy! π» π =πβ
log 1 π + 1βπ β
log 1 1βπ πβ π½ 2 π w.p. 1βπ 1βπ w.p. π π΅ππΆ(π) August 11, 2017 IITB: General Strong Polarization
3
βAchievingβ Channel Capacity
Commonly used phrase. Many mathematical interpretations. Some possibilities: How small can π be? Get π
>πΆβπ with polytime algorithms? [Luby et al.β95] Make running time poly 1 π ? Open till 2008 Arikanβ08: Invented βPolar Codesβ β¦ Final resolution: Guruswami+Xiaβ13, Hassani+Alishahi+Urbankeβ13 β Strong analysis Shannon β48 : π=π πΆβπ
β2 Forney β66 :time =ππππ¦ π, π 2 August 11, 2017 IITB: General Strong Polarization
4
Context for todayβs talk
[Arikanβ08]: General class of codes. [GXβ13, HAUβ13]: One specific code within. Why? Bottleneck: Strong Polarization Arikan et al.: General class polarizes [GX,HAU]: Specific code polarizes strongly! This work/talk: Introduce Local Polarization Local β Strong Polarization Thm: All known codes that polarize also polarize strongly! August 11, 2017 IITB: General Strong Polarization
5
IITB: General Strong Polarization
This talk: What are Polar Codes βLocal vs. Globalβ (Strong) Polarization Analysis of Polarization August 11, 2017 IITB: General Strong Polarization
6
Lesson 0: Compression β Coding
Linear Compression Scheme: π»,π· for compression scheme for bern π π if Linear map π»: π½ 2 π β π½ 2 π Pr πβΌbern π π π· π»β
π β π β€π Hopefully π π βπ»(π) Compression β Coding Let π» β₯ be such that π»β
π» β₯ =0; Encoder: πβ¦ π» β₯ β
π Error-Corrector: π= π» β₯ β
π+πβ¦πβπ· π»β
π = π€.π. 1βπ π» β₯ β
π August 11, 2017 IITB: General Strong Polarization
7
Question: How to compress?
Arikanβs key idea: Start with 2Γ2 βPolarization Transformβ: π,π β π+π,π Invertible β so does nothing? If π,π independent, then π+π βmore randomβ than either π | π+π βless randomβ than either Iterate (ignoring conditioning) End with bits that are completely random, or completed determined (by others). Output βtotally random partβ to get compression! August 11, 2017 IITB: General Strong Polarization
8
Information Theory Basics
Entropy: Defn: for random variable πβΞ©, π» π = π₯βΞ© π π₯ log 1 π π₯ where π π₯ = Pr π=π₯ Bounds: 0β€π» π β€ log Ξ© Conditional Entropy Defn: for jointly distributed π,π π» π π = π¦ π π¦ π»(π|π=π¦) Chain Rule: π» π,π =π» π +π»(π|π) Conditioning does not increase entropy: π» π π β€π»(π) Equality β Independence: π» π π =π» π β πβ₯π August 11, 2017 IITB: General Strong Polarization
9
Iteration by Example: π΄,π΅,πΆ,π· β π΄+π΅+πΆ+π·,π΅+π·,πΆ+π·, π·
πΈ,πΉ,πΊ,π» β πΈ+πΉ+πΊ+π»,πΉ+π»,πΊ+π»,π» π΅+π· πΉ+π» π΅+π·+πΉ+π» π» π΅+π· π΄+π΅+πΆ+π·) π» π΅+π·+πΉ+π»| π΄+π΅+πΆ+π·, πΈ+πΉ+πΊ+π» π» πΉ+π»| π΄+π΅+πΆ+π·, πΈ+πΉ+πΊ+π». π΅+π·+πΉ+π» π» πΉ+π» πΈ+πΉ+πΊ+π») August 11, 2017 IITB: General Strong Polarization
10
IITB: General Strong Polarization
Algorithmics Summary: Iterating π‘ times yields πΓπ-polarizing transform for π= 2 π‘ : (π 1 ,β¦, π π )β( π 1 ,β¦, π π ) β π π ( π βπ» π β
π) Encoding/Compression: Clearly poly time. Decoding/Decompression: βSuccessive cancellation decoderβ: implementable in poly time. Can compute Pr πβΌbern(π) π π =1 | π <π recursively Can reduce both run times to π(π log π) Only barrier: Determining π Resolved by [Tal-Vardyβ13] August 11, 2017 IITB: General Strong Polarization
11
Analysis: The Polarization martingale
Martingale: Sequence of r.v., π 0 , π 1 ,β¦ βπ, π₯ 0 ,β¦, π₯ πβ1 , πΌ π π | π₯ 0 ,β¦, π₯ πβ1 = π₯ πβ1 Polarization martingale: π π = Conditional entropy of random output at πth stage. Why martingale? At πth stage two inputs take (π,π΄); (π,π΅) Output = (π+π, Aβͺπ΅) and π, π΄βͺπ΅βͺπ+π Input entropies = π₯ πβ1 (π» π π΄ =π» π π΅ = π₯ πβ1 ) β Output entropies average to π₯ πβ1 π» π+π π΄,π΅ +π» π π΄,π΅,π+π =2 π₯ πβ1 August 11, 2017 IITB: General Strong Polarization
12
IITB: General Strong Polarization
Quantitative issues How βquicklyβ does this martingale converge? (π) How βwellβ does it converge? π Formally, want: Pr π π‘ β π,1βπ β€π π: Gives gap to capacity π: Governs decoding failure βπβ
π Reminder: π= 2 π‘ For useable code, need: πβͺ 4 βπ‘ For poly 1 π block length, need: πβ€ πΌ π‘ , πΌ<1 August 11, 2017 IITB: General Strong Polarization
13
Regular and Strong Polarization
(Regular) Polarization: βπΎ>0, Lim π‘ββ Pr π π‘ β πΎ π‘ ,1β πΎ π‘ β0. Strong Polarization: βπΎ>0 βπΌ>0 βπ‘, Pr π π‘ β πΎ π‘ , 1β πΎ π‘ β€ πΌ π‘ Both βglobalβ properties (large π‘ behavior) Construction yields: Local Property How does π π relate to π πβ1 ? Local vs. Global Relationship? Regular polarization well understood. Strong understood only π,π β¦(π+π,π) What about π,π,π β¦ π+π,π,π ?, more generally? August 11, 2017 IITB: General Strong Polarization
14
IITB: General Strong Polarization
General Polarization Basic underlying ingredient πβ π½ 2 πΓπ Local polarization step: Pick π π , π΄ π πβ[π] i.i.d. One step: generate πΏ 1 ,β¦, πΏ π =πβ
π 1 ,β¦, π π π πβ1 =π» π π | βͺ β π΄ β , π <π =π» π π | π΄ π π π =π» πΏ π | βͺ β π΄ β , πΏ <π Examples π» 2 = ; π» 3 β² = Which matrices polarize? Strongly? August 11, 2017 IITB: General Strong Polarization
15
IITB: General Strong Polarization
Mixing matrices Observation 1: Identity matrix does not polarize. Observation 1β: Upper triangular matrix does not polarize. Observation 2: (Row) permutation of non-polarizing matrix does not polarize! Corresponds to permuting π 1 ,β¦, π π Definition: π mixing if no row permutation is upper-triangular. [KSU]: π mixing β martingale polarizes. [Our main theorem]: π mixing β martingale polarizes strongly. August 11, 2017 IITB: General Strong Polarization
16
Key Concept: Local (Strong) Polarization
Martingale π 0 , π 1 ,β¦ locally polarizes if it exhibits Variance in the middle: βπ>0 βπ>0, Var π π π πβ1 β π,1βπ >π Suction at the end: βπ>0 βπ<β, βπ>0 Pr π π < π πβ1 π | π πβ1 β€π β₯π (similarly with 1 β π π ) Definition local: compares π π with π πβ1 Implications global: Thm 1: Local Polarization β Strong Polarization. Thm 2: Mixing matrices β Local Polarization. August 11, 2017 IITB: General Strong Polarization
17
Mixing Matrices β Local Polarization
2Γ2 case: Ignoring conditioning, we have π» π β π» 2π 1βπ w.p π» π βπ» 2π 1βπ w.p Variance, Suction β Taylor series for log . β¦ πΓπ case: Reduction to 2Γ2 case: probs. ββΌ 1 π August 11, 2017 IITB: General Strong Polarization
18
Local β (Global) Strong Polarization
Step 1: Medium Polarization: βπΌ,π½<1 Pr π π‘ β π½ π‘ ,1β π½ π‘ β€ πΌ π‘ Proof: Potential Ξ¦ π‘ =πΌ min π π‘ , 1β π π‘ Variance+Suction β βπ<1 s.t. Ξ¦ π‘ β€πβ
π π‘β1 (Aside: Why π π‘ ? Clearly π π‘ wonβt work. And π π‘ 2 increases!) β Ξ¦ π‘ β€ π π‘ β Pr π π‘ β π½ π‘ ,1β π½ π‘ β€ π π½ π‘ August 11, 2017 IITB: General Strong Polarization
19
Local β (Global) Strong Polarization
Step 1: Medium Polarization: βπΌ,π½<1 Pr π π‘ β π½ π‘ ,1β π½ π‘ β€ πΌ π‘ Step 2: Medium Polarization + π‘-more steps β Strong Polarization: Proof: Assume π 0 β€ πΌ π‘ ; Want π π‘ β€ πΎ π‘ w.p. 1 βπ πΌ 1 π‘ Pick π large & π s.t. Pr π π < π πβ1 π | π πβ1 β€π β₯π 2.1: Pr βπ π .π‘. π π β₯π β€ π β1 β
πΌ π‘ (Doobβs Inequality) 2.2: Let π π = log π π ; Assuming π π β€π for all π π π β π πβ1 β€β log π w.p. β₯π; & β₯π w.p. β€ 2 βπ . πΌxp π π‘ β€βπ‘ log π π +1 β€2π‘β
log πΎ Concentration! Pr π π‘ β₯π‘β
log πΎ β€ πΌ 2 π‘ QED! August 11, 2017 IITB: General Strong Polarization
20
IITB: General Strong Polarization
Conclusion Simple General Analysis of Strong Polarization But main reason to study general polarization: Maybe some matrices polarize even faster! This analysis does not get us there. But hopefully following the (simpler) steps in specific cases can lead to improvements. August 11, 2017 IITB: General Strong Polarization
21
IITB: General Strong Polarization
Thank You! August 11, 2017 IITB: General Strong Polarization
Similar presentations
© 2025 SlidePlayer.com. Inc.
All rights reserved.