Download presentation
Presentation is loading. Please wait.
1
LPHY 2000 Bordeaux France July 2000
The split operator numerical solution of Maxwell’s equations Q. Su Intense Laser Physics Theory Unit Illinois State University LPHY Bordeaux France July 2000 S. Mandel R. Grobe H. Wanare G. Rutherford Acknowledgements: E. Gratton, M. Wolf, V. Toronov NSF, Research Co, NCSA
2
Light scattering in random media
Electromagnetic wave Maxwell’s eqns Light scattering in random media Photon density wave Boltzmann eqn Photon diffusion Diffusion eqn
3
Outline Split operator solution of Maxwell’s eqns Applications
simple optics Fresnel coefficients transmission for FTIR random medium scattering Photon density wave solution of Boltzmann eqn diffusion and P1 approximations Outlook
4
Numerical algorithms for Maxwell’s eqns
Frequency domain methods Time domain methods U(t->t+dt) Finite difference A. Taflove, Computational Electrodynamics (Artech House, Boston, 1995) Split operator J. Braun, Q. Su, R. Grobe, Phys. Rev. A 59, 604 (1999) U. W. Rathe, P. Sanders, P.L. Knight, Parallel Computing 25, 525 (1999)
5
Exact numerical simulation of Maxwell’s Equations
Initial pulse satisfies : Time evolution given by :
6
Split-Operator Technique
Effect of vacuum Effect of medium
7
Numerical implementation of evolution in Fourier space
where and Reference: “Numerical solution of the time-dependent Maxwell’s equations for random dielectric media” - W. Harshawardhan, Q.Su and R.Grobe, submitted to Physical Review E
8
Refraction at air-glass interface
First tests : Snell’s law and Fresnel coefficients Refraction at air-glass interface 10 -10 -5 5 n1 l n2 y/l q2 -10 10 5 -5 z/l
9
Fresnel Coefficient
10
Tunneling due to frustrated total internal reflection
Second test Tunneling due to frustrated total internal reflection d s q n 1 n 2 n 1
11
Amplitude Transmission Coefficient vs Barrier Thickness
12
Light interaction with random dielectric spheroids
Microscopic realization Time resolved treatment Obtain field distribution at every point in space One specific realization 400 ellipsoidal dielectric scatterers Random radii range [0.3 l, 0.7 l] Random refractive indices [1.1,1.5] Input - Gaussian pulse
13
20 T = 8 T = 16 10 -10 y/l T = 24 T = 40 10 -10 -20 z/l
14
Summary - 1 Developed a new algorithm to produce exact spatio-temporal solutions of the Maxwell’s equations Technique can be applied to obtain real-time evolution of the fields in any complicated inhomogeneous medium All near field effects arising due to phase are included Tool to test the validity of the Boltzmann equation and the traditional diffusion approximation
15
Photon density wave Input light Output light Infrared carrier
penetration but incoherent due to diffusion Modulated wave 100 MHz ~ GHz maintain coherence tumor Input light Output light D.A. Boas, M.A. O’Leary, B. Chance, A.G. Yodh, Phys. Rev. E 47, R2999, (1993)
16
for photon density wave
Boltzmann Equation for photon density wave J.B. Fishkin, S. Fantini, M.J. VandeVen, and E. Gratton, Phys. Rev. E 53, 2307 (1996) Studied diffusion approximation and P1 approximation Q: How do diffusion and Boltzmann theories compare?
17
Bi-directional scattering phase function
Diffusion approximation Other phase functions Mie cross-section: L. Reynolds, C. Johnson, A. Ishimaru, Appl. Opt. 15, 2059 (1976) Henyey Greenstein: L.G. Henyey, J.L. Greenstein, Astrophys. J. 93, 70 (1941) Eddington: J.H. Joseph, W.J. Wiscombe, J.A. Weinman, J. Atomos. Sci. 33, 2452 (1976)
18
Solution of Boltzmann equation
Incident: — Transmitted: — Diffusion: —
19
Confirmed behavior obtained in P1 approx
Frequency responses reflected transmitted Exact Boltzmann: — Diffusion approximation: — Confirmed behavior obtained in P1 approx J.B. Fishkin, S. Fantini, M.J. VandeVen, and E. Gratton, Phys. Rev. E 53, 2307 (1996)
20
Photon density wave Right going Left going Exact Boltzmann: —
Diffusion approximation: —
21
Resonances at w = n l/2 (n = integer) Exact Boltzmann: —
Diffusion approximation: —
22
Summary Outlook Numerical Maxwell, Boltzmann equations obtained
Near field solution for random medium scattering Direct comparison: Boltzmann and diffusion theories Outlook Maxwell to Boltzmann / Diffusion? Inverse problem?
Similar presentations
© 2025 SlidePlayer.com. Inc.
All rights reserved.