Download presentation
Presentation is loading. Please wait.
Published byUrszula Barańska Modified over 6 years ago
1
MICROWAVE OBSERVATION OF THE VAN DER WAALS COMPLES O2-CO
F. E. Marshall, Thomas D. Persinger, David Joseph Gillcrist, Nicole Moon, Steve Ndengue, Richard Dawes, and G. S. Grubbs II 71st International Symposium on Molecular Spectroscopy June 20-24, 2016, Urbana-Champaign, IL, USA; WG14
2
O2 Complexes Are Rare Making up 21% of our atmosphere, O2 complex studies are quite rare- Only 5 different complexes mentioned on Stew Novick’s Bibliography1: Ar-O2, DCl-O2, SO2-O2, N2O-O2, and O2-O2 Unfinished work of O2-OCS by Brian Howard2 and H2O-O2 by Endo and coworkers3 Why??? WA10: INFRARED SPECTRUM OF CO-O2, A 'NEW' WEAKLY-BOUND COMPLEX; Bob McKellar, A. J. Barclay, K. H. Michaelian, Nasser Moazzen-Ahmadi Stew Novick. BIBLIOGRAPHY OF ROTATIONAL SPECTRA OF WEAKLY BOUND COMPLEXES. Brian Howard, Private Communication. Y. Kasai, E. Dupuy, R. Saito, K. Hashimoto, A. Sabu, S. Kondo, Y. Sumiyoshi, and Y. Endo, Atmos. Chem. Phys., 11 (2011),
3
Chirp Results 1% CO, 5% O2 in He 1 atm backing pressure 20k FIDs
500 MHz Chirp ( GHz) 50k FIDs 500 MHz Chirp ( GHz)
4
Cavity Results 1% CO, 5% O2 in He (different gas mix)
2 atm backing pressure No Helmholtz Coils No splitting!!! 1500 nozzle pulses 74:1 S:N
5
O2-OCS Comparison Brian Howard, Private Communication and B. J. Howard, 57th ISMS TI01 Splitting?! Needed Helmholtz coils to null field! Complicated Hamiltonian due to O2 dynamics!
6
O2-OCS Hamiltonian JKa Kc - JKa Kc Observed/MHz Obs-calc/MHz 0.366 -0.100 -0.149 0.303 -0.020 -0.181 0.235 0.104 0.610 -0.311 0.308 0.159 0.175 -0.187 0.080 0.073 0.213 -0.106 -0.432 -0.269 JKa Kc - JKa Kc Observed/MHz Obs-calc/MHz 0.268 -0.251 202101 -0.112 303202 0.114 0.346 -0.353 -0.593 -0.159 0.568 0.021 -0.493 -0.310 0.333 0.064 -0.313 -0.307 0.583 0.471 -0.255 -0.340 A /MHz (24) B /MHz (1) C /MHz (1) DJ /MHz (2) DJK /MHz (2) DK /MHz (2) d1 /MHz (3) 90 /GHz 83.3 /MHza 18.3 Cannot fit these using standard semirigid Hamiltonian; Tried to recreate Howard’s assignments in Pickett’s code with no luck
7
O2-H2O Comparison Y. Kasai, E. Dupuy, R. Saito, K. Hashimoto, A. Sabu, S. Kondo, Y. Sumiyoshi, and Y. Endo, Atmos. Chem. Phys., 11 (2011), No Paramagnetic Splitting?
8
O2-H2O Hamiltonian Y. Kasai, E. Dupuy, R. Saito, K. Hashimoto, A. Sabu, S. Kondo, Y. Sumiyoshi, and Y. Endo, Atmos. Chem. Phys., 11 (2011), Using SPCAT, we can predict these transitions with obs-calc for O2-H2O
9
O2-CO? Some preliminary calculations indicated the following structure: Parameter Value (MHz) A 28626 B 2902.4 C 2635.2 Calculations ran at uMP2/aug-cc-pVQZ level Transitions needed each component of the O2-CO in He mixture. The transition did not appear with previously tested O2-OCS molecule. Furthermore, He-CO was not visible when this mix was made.
10
O2-CO Theory (Dawes Group)
GLOBAL MINIMUM, R=3.46Å LOCAL MINIMUM, R=3.82Å
11
O2-CO Theory (Dawes Group)
GLOBAL MINIMUM, R=3.46Å, cm-1 LOCAL MINIMUM, R=3.82Å, cm-1 He-CO is predicted to be -22.9cm-1,a a. C. E. Chuaqui, R. J. Le Roy, A. R. W. McKeller, JCP 101 (1994) 39.
12
Interesting Developments
Brian Howard’s Private Communication says that the spin is linked to the Ka term in O2-OCS. These levels will not be split if Ka=0. Prediction with λ=59.5 GHz as in free O2 gives a close Ka=0 transition to our line with reasonable intensity. 303 – 202?
13
Acknowledgements GSGII: Missouri S&T Startup; UM Research Board Grant
Dawes: NSF CHE
Similar presentations
© 2025 SlidePlayer.com. Inc.
All rights reserved.