Presentation is loading. Please wait.

Presentation is loading. Please wait.

Only three lines observed R(0) R(1) P(1)

Similar presentations


Presentation on theme: "Only three lines observed R(0) R(1) P(1)"— Presentation transcript:

1 Only three lines observed R(0) R(1) P(1)
The detection of R(1) and P(1) indicates T> 0K Harry Kroto 2004

2 Only three lines observed R(0) R(1) P(1)
The detection of R(1) and P(1) indicates T> 0K  l  Io I I I = Ioe- l I = Io (1 - l + …) Io - I = I ~ l Harry Kroto 2004

3 IR(1) /IR(0) ~ R(1) /R(0)
Only three lines observed R(0) R(1) P(1) The detection of R(1) and P(1) indicates T> 0K  l  Io I I I = Ioe- l I = Io (1 - l + …) (Io – I)/ Io = I/ Io ~ l IR(1) /IR(0) ~ R(1) /R(0) Harry Kroto 2004

4 IR(1) /IR(0) ~ R(1) /R(0)
Only three lines observed R(0) R(1) P(1) The detection of R(1) and P(1) indicates T> 0K  l  Io I I I = Ioe- l I = Io (1 - l + …) (Io – I)/ Io = I/ Io ~ l IR(1) /IR(0) ~ R(1) /R(0) Harry Kroto 2004

5 IR(1) /IR(0) ~ R(1) /R(0)
Only three lines observed R(0) R(1) P(1) The detection of R(1) and P(1) indicates T> 0K  l  Io I I I = Ioe- l I = Io (1 - l + …) (Io – I)/ Io = I/ Io ~ l IR(1) /IR(0) ~ R(1) /R(0) Harry Kroto 2004

6 IR(1) /IR(0) ~ R(1) /R(0)
Only three lines observed R(0) R(1) P(1) The detection of R(1) and P(1) indicates T> 0K  l  Io I I I = Ioe- l I = Io (1 - l + …) (Io – I)/ Io = I/ Io ~ l IR(1) /IR(0) ~ R(1) /R(0) Harry Kroto 2004

7

8 Fermi’s Golden Rule x Io I l Harry Kroto 2004

9 Beer Lambert Law I= Io e-l
Fermi’s Golden Rule x Io I l Beer Lambert Law I= Io e-l Harry Kroto 2004

10 Beer Lambert Law I= Io e-l
Fermi’s Golden Rule x Io I l Beer Lambert Law I= Io e-l Harry Kroto 2004

11 Beer Lambert Law I= Io e-l
Fermi’s Golden Rule x Io I l Beer Lambert Law I= Io e-l Harry Kroto 2004

12 Beer Lambert law I= Io e-l
Fermi’s Golden Rule x Io I l Beer Lambert law I= Io e-l Harry Kroto 2004

13 Beer Lambert law I= Io e-l  is the absorption coefficient
Fermi’s Golden Rule x Io I l Beer Lambert law I= Io e-l  is the absorption coefficient  = (83/3hc)n em 2 (Nm-Nn)(o-) Harry Kroto 2004

14  = (4/3ħc) n em2  (Nm-Nn) (o-)
Harry Kroto 2004

15  = (4/3ħc) n em2  (Nm-Nn) (o-)
Square of the transition moment n em2 Harry Kroto 2004

16  = (4/3ħc) n em2  (Nm-Nn) (o-)
① ② Square of the transition moment n em2 Frequency of the light  Harry Kroto 2004

17  = (4/3ħc) n em2  (Nm-Nn) (o-)
① ② ③ Square of the transition moment n em2 Frequency of the light  Population difference (Nm- Nn) Harry Kroto 2004

18  = (4/3ħc) n em2  (Nm-Nn) (o-)
① ② ③ ④ Square of the transition moment n em2 Frequency of the light  Population difference (Nm- Nn) Resonance factor - Dirac delta function (0) = 1 Harry Kroto 2004

19 C Solution > Energy Levels
For the H atom we shall just use the Bohr result E(n) = - R/n2 D Selection Rules n no restriction l = ±1 E Transition Frequencies E = - R[ 1/n22 – 1/n12] Harry Kroto 2004

20 Harry Kroto 2004

21 Harry Kroto 2004

22 Harry Kroto 2004

23 Harry Kroto 2004

24 Harry Kroto 2004

25 Harry Kroto 2004

26 Harry Kroto 2004

27 Harry Kroto 2004

28 Hot gas cloud –the famous Orion Nebulae
At the centre is the Trapezium Cluster of very hot new stars Harry Kroto 2004

29 2b = 103/n yrs per collision 3b = 1023/n2 yrs per collision
Collisions in the Interstellat Medium ISM In space the pressures are low Very low If n = number of molecules per cc (mainly H) then 2b = 103/n yrs per collision 3b = 1023/n2 yrs per collision Number densities are anything from n = Harry Kroto 2004

30 Einstein Coefficients
Bn<-m m Harry Kroto 2004

31 Einstein Coefficients
Bn<-m Bn->m m Harry Kroto 2004

32 An->m/ Bn->m = 8h3/c 3
Einstein Coefficients n Bn<-m Bn->m An->m m An->m/ Bn->m = 8h3/c 3 Harry Kroto 2004

33 Einstein Coefficients
Bn<-m Bn->m An->m m A = 1.2 x 3 n em2 transitions per sec Spontaneous emission lifetime   (sec) = 1/A = 1037/3 sec Harry Kroto 2004

34  (sec) = 1037/3   (cm-1)  (Hz) 3 (Hz3)  (sec)
H (1420 MHz) cm x x * H2CO rotations cm x x CO2 vibrations  x x Na D electronic nm 2x x x H Lyman  nm x x Calculations assume e = 1Debye yr = 3 x 107 sec * magnetic dipole Harry Kroto 2004

35 Harry Kroto 2004

36 Bohr radius an = aon ao = 0.05 nm Harry Kroto 2004

37 Bohr radius an = aon2 ao = 0.05 nm Calculate a10, a100 and a300 in cm
Harry Kroto 2004

38 Bohr radius an = aon2 ao = 0.5 Å (1Å = 10-8cm)
a300 = 0.5x10-3 cm = mm Harry Kroto 2004

39 Harry Kroto 2004

40 Nitrosoethane Harry Kroto 2004

41 What can molecules do Harry Kroto 2004

42 What can molecules do 2 Harry Kroto 2004

43 What can molecules do 2 Harry Kroto 2004

44 Harry Kroto 2004

45 Harry Kroto 2004

46 Harry Kroto 2004

47 Harry Kroto 2004

48 Harry Kroto 2004

49 Harry Kroto 2004

50 Harry Kroto 2004

51 Harry Kroto 2004

52 Harry Kroto 2004

53 Harry Kroto 2004


Download ppt "Only three lines observed R(0) R(1) P(1)"

Similar presentations


Ads by Google