Presentation is loading. Please wait.

Presentation is loading. Please wait.

Sang-Pil Kim1,2, Kwang-Ryeol Lee1, Jae-Sung Kim3 and Yong-Chae Chung2

Similar presentations


Presentation on theme: "Sang-Pil Kim1,2, Kwang-Ryeol Lee1, Jae-Sung Kim3 and Yong-Chae Chung2"— Presentation transcript:

1 Sang-Pil Kim1,2, Kwang-Ryeol Lee1, Jae-Sung Kim3 and Yong-Chae Chung2
Conference on Computational Physics 2006 Molecular Dynamics Study on the Surface Structure Evolution of Au and Pd by High Energy Ar Bombardment Sang-Pil Kim1,2, Kwang-Ryeol Lee1, Jae-Sung Kim3 and Yong-Chae Chung2 Future Technology Research Division, KIST, Seoul, Korea Division of Advanced Materials Science Engineering, Hanyang University, Seoul, Korea Department of Physics, Sook-Myung Women’s University, Seoul, Korea

2 Ion Bombardment (Sputtering)
Sputter deposition Ion bombardment Morphological evolution of the sputtered surface  We focused on the structural evolution in Ion Bombardment T.C. Kim et al., PRL 92, (2001).

3 Motivation Makeev et al., Nucl. Instr. and Meth. in Phys. Res. B 197, 185 (2002). From the value of a, σ and μ, morphology evolution could be generated from solving the continuum equations. a : penetration depth of incident Ar atom σ,μ : the widths of the distribution in directions parallel and perpendicular to the incoming beam Atomic Mass Crystal Structure Lattice Parameter (Å) Cohesive Energy (eV) Bulk Modulus (GPa) Melting Point (K) Au 196.96 FCC 4.08 3.93 220 1337 Pd 106.42 3.891 3.91 180 1828  We employed classical molecular dynamics simulation to investigated the details of the surface erosion behavior during high energy Ar bombardment on Au and Pd(001).

4 Calculation Procedure
81.6×81.6×102 (Å) for Au 77.8×77.8×97.28 (Å) for Pd Dimension of Substrate Incident angle ≈ normal angle θ (tilt angle) = 1.3°, φ (twist angle) = 1.3° Substrate : 300 K  damping layer included Ar : 0.5 keV Force field  EAM1) + ZBL2) 200 trials for each case  Initial Ar positions were randomly selected within surface unit cell LAMMPS3) (KIST modified) S.M. Foiles et al., PRB 33, 7983 (1986). J.F. Ziegler et al., The Stopping and Range of Ions in Matter, Pergamon, New York, (1985).

5 Penetration Depth* Au Pd Mean depth (Å) 6.12 5.52 Bounded Ar (%) 12.0
*Penetration Depth: maximum penetrated depth of Ar atom Au Pd Mean depth (Å) 6.12 5.52 Bounded Ar (%) 12.0 4.0 Standard deviation 4.868 3.901

6 Impact Point Au(001) Pd(001) Bounded atoms: ◆  Top site
Unusual results: ▲  Off top site Maximum depth: ●  Saddle site Bounded atoms:★  Top site Maximum frequency:▼  Off top site Maximum depth:◆  Saddle site

7 Erosive Surface Distribution
1 10 1 10 Frequencies at each point Average sputtered atoms  Au atoms, Pd atoms

8 Atomic Displacement Φ : normalized number of atoms
N(r) : number of atoms until distance r S(r) : area until distance r

9 Calculation of Tm NPT ensemble Au: 1337 K, Pd: 1828 K
Experimental Value Energy of melted atom Au: 1337 K, Pd: 1828 K Au: -3.4 eV, Pd: -3.2 eV

10 Energy Propagation  Melting region vanished very rapidly within 1 ps
0.5keV Ar on Au(001) 0.0 -3.4 Showing atoms only upper than -3.4 eV for Au, -3.2 eV for Pd of individual energy 0.1 ps 0.2 ps 0.3 ps 0.4 ps 1.0 ps <001> <110> 0.5keV Ar on Pd(001) 0.0 -3.2 0.1 ps 0.2 ps 0.3 ps 0.4 ps 1.0 ps  Melting region vanished very rapidly within 1 ps

11 Energy Propagation: Au
Average melting atoms per each event  Au atoms

12 Energy Propagation: Pd
Average melting atoms per each event  Pd atoms

13 Summary > Au Pd 6.12 5.52 15.34 14.38 Energy propagation
Penetration depth (Å) 6.12 5.52 Surface diffusion length (Å) 15.34 14.38 > z x Energy propagation Au: Vertical direction > Horizontal direction Pd: Vertical direction < Horizontal direction Result in different surface erosion behavior Distance from Ar stop position (A)


Download ppt "Sang-Pil Kim1,2, Kwang-Ryeol Lee1, Jae-Sung Kim3 and Yong-Chae Chung2"

Similar presentations


Ads by Google