Download presentation
Presentation is loading. Please wait.
Published by대진 사공 Modified over 6 years ago
1
Objectives • Written and graphic symbols of symmetry elements
• Basic symmetry elements and symmetry operations • Written and graphic symbols of symmetry elements • Crystal systems and Miller indices • Lattices and unit cell
2
Periodic array in a crystal: Example 1
STM (Scanning Tunneling Microscope) image of a platinum surface IBM Research Almaden Research Center
3
Periodic array in a crystal: Example 2
TopoMetrix Corporation Interconnected 6-membered rings of graphite and the triangular geometry about each carbon atom.
4
Symmetrical crystal forms
5
Non-isometric forms Fig. 5.38, Klein pg. 205
6
Isometric forms Fig. 5.38, Klein pg. 206
7
Rotation A Symmetrical Pattern 6 6
8
6 6 Two-fold rotation 360˚/2 Motif Element Operation The axis
The plane (perpendicular to the axis) The terms: motif, symmetry element, symmetry operation, the pattern 2-fold, 360/2=180 The symbal 6 Operation
9
Three-fold rotation 360o/3 6 step 1 6 step 3 6 step 2
10
d 9 n-fold Rotation a Z t 6 6 6 6 6 1-fold 2-fold 3-fold 4-fold 6-fold
identity
11
6 6 Inversion In 2D, inversion = 2-fold rotation
Role play: difference between In 2D, inversion = 2-fold rotation In 3D, inversion ≠ 2-fold rotation
12
Rotation + Inversion 3
13
Rotation + Inversion 3 1
14
Rotation + Inversion 3
15
Rotation + Inversion 3 1 2
16
Rotation + Inversion 3
17
Rotation + Inversion 3
18
Rotation + Inversion 3 1 2 3
19
Rotation + Inversion 3 1 2 3 4
20
Rotation + Inversion 3 1 2 5
21
Rotation + Inversion 3 3 5 1 4 2 6
22
Crystal systems: length/angle relations
Klein Fig. 5.27, pg. 196
23
Crystal System - Symmetry Characteristics
24
Crystal system - Symmetry characteristics
Klein Fig. 5.25, pg. 193
25
Lattice, lattice point, unit cell
26
Escher Print: Equivalent points
27
Escher Print: Which Unit Cell?
28
Plane lattices (nets): 5 unique types
Fig. 5.50, Klein, pg 218
29
Bravais lattices (14 unique types)
Triclinic ¹ b ¹ g c c c Fig. 5.63 Klein, pg 232 Table 5.9 Klein, pg 233 b b P I = C a a Monoclinic g o a = = 90 ¹ b a b c c b a P C F I Orthorhombic o a b c b g a = = = 90
30
Bravais lattices (14 unique types)
2 1 P I Tetragonal 2 a 1 = a c a = b = g = 90 o a 3 a 2 Fig. 5.63 Klein, pg 232 Table 5.9 Klein, pg 233 a 1 P F I Isometric 1 2 a = a 3 a = b = g = 90 o
Similar presentations
© 2025 SlidePlayer.com. Inc.
All rights reserved.