Download presentation
Presentation is loading. Please wait.
1
CH+ spectrum and diffuse interstellar bands
toward Herschel 36 excited by dust emission Julie Dahlstrom, Takeshi Oka, Sean Johnson, Daniel E. Welty, Lew Hobbs and Donald G. York Department of Astronomy and Astrophysics, University of Chicago June 20, 2012, Columbus meeting WH07
2
1937 Birth of Molecular Astrophysics
Theodore Dunham, Jr Walter Sydney Adams, T. Dunham, Jr. PASP 49, 29 (1937) PAAS 9, 5 (1937) W. S. Adams, ApJ, 93, 11 (1941) P. Swings & L. Rosenfeld, ApJ 86, 483 (1937) McKellar, PASP 52, 187, 312 (1940) 53, 233 (1941) CH CN Pub. Dom. Astroph. Obs. 7, 251 (1941) Tr = 2.3 K A. E. Douglas and G. Herzberg, ApJ 94, 381 (1941) CH+
3
CN and the cosmic blackbody radiation
P(1) R(0) Te = 2.3 K (= Tr) Andrew McKellar A. McKellar, PASP, 51, 233 (1940) A. McKellar, PDAO, 7, 251 (1941) W.S. Adams, ApJ, 93, 11 (1941)
4
AV ~ 6 AV ~ 4 Goto, Stecklum, Linz, Feldt, Henning, Pascucci, Usuda, 2006, ApJ, 649, 299
5
The three temperatures
Kinetic temperature Tk Collision Maxwell 1860 Phil. Mag. 4, 19 α2 = 2kTk/m Radiative temperature Tr Radiation Planck Ann. D. Physik 4, 564 θ = Tr Excitation temperature Te Observed Boltzmann 1871 Wiener Berichte 63, 712 If Tk = Tr, thermal, Boltzmann Te = Tk = Tr If Tk > Tr, collision dominated thermal Te = Tk radiation dominated thermal Te = Tr intermediate non-thermal −∞ < Te < ∞
6
CH+ in the J = 1 excited rotational level
and radiative temperature of dust emission 2 1 Te = Tr = 14.6 K R(1) R(0) Q(1) μ = 1.7 Debye A = s-1 τ = 140 s ncrit = 3 × 106 cm-3 2 1 CN 4.9 K CH K HD Bakker et at. A&A, 323, 469 (1997)
7
CH in the J = 3/2 excited fine structure level
~ 25.6 K Te = Tr = 6.7 K < 14.6 K CH+ CH
8
Effect of radiation on DIBs toward Her 36
(B’−B)J(J +1) Extended Tail toward Red ETR East Turkestan Republic
9
Simulation of DIB velocity profiles
with high Tr and the 2.7 K cosmic background radiation Collision only Radiation and collision , Einstein 1916 Goldreich Kwan 1974 ΔJ > 1 Principle of Detailed Balancing Boltzmann, H-theorem Wiener Berichte 66, 275
10
Rotational distribution n(J)
11
Spectrum Rotation of linear molecules Rotational constant
CH+ 417,568 MHz K Moment of inertia HC5N 1,331 MHz K R(J) J + 1 ← J ν = ν0 + B’(J + 1)(J +2) – BJ(J + 1) = ν0 + 2B’(J + 1) + (B’ – B)J(J + 1) R() Q(J) J ← J ν = ν0 + B’J(J +1) – BJ(J + 1) = ν (B’ – B)J(J + 1) P(J) J ˗ 1 ← J ν = ν0 + B’(J + 1)(J +2) – BJ(J + 1) = ν0 – 2B’J (B’ – B)J(J + 1)
12
Simulated spectra Tr, Tk, B, μ, C, β, Γ DIBs CH+ CH
13
Reservation λ6613 Sarre et al. 1995, MNRAS 277, L41
Kerr et al. 1996, MNRAS 283, L105
14
Other possible mechanisms
Linear molecules B’ – B μ General molecules A’ – A, B’ – B, C’ – C μa, μb, μc Special group of molecules: Non-linear ← linear CH2 (B3Σu- - X3B1), HCO (A2Π – XA’) and NO2 (E2Σu+ - X2A1) 100 % Vibrational excitation?
15
I am scared Short column length L ≤ 1000 AU
High radiative temperature Tr ~ 80 K
Similar presentations
© 2025 SlidePlayer.com. Inc.
All rights reserved.